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Abstract

Let G be a finite group of order |G| odd and let £#/*(—)®Z[1/|G|] denote elliptic cohomology
tensored by Z[1/|G|]. Then we give a description of &##*(E(N,G) x vX) ® Z[1/|G|], where N
is a normal subgroup of G, E(N,G) is the universal N-free G space and X is any finite G-CW
complex where N acts freely. We explain how some of the results of Hopkins—Kuhn—Ravenel
can be recovered for our results. © 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: S5N20, 57T99

1. Introduction

In [12] we defined, for any finite group G of odd order |G|, a multiplicative
G-equivariant cohomology theory 5([5 . This theory is a (G-equivariant generaliza-
tion of the cohomology theory X — &2 (X) @z Z[1/|G|}, where &% is the elliptic
cohomology of Landweber, Ravenel and Stong [21]. For this reason we called 5//;
equivariant elliptic cohomology. 1If X is a finite G-CW complex, then o?/’/g(X ) is
defined by the equality

ELE(X) = MSOK(X) Q &447, (1.1)
Mso

where MSOJ(—) is the integer graded version of the homotopy theoretic-oriented equi-
variant cobordism functor of [10}, MSO} = MSOX(pt), and &/¢} is a graded ring
closely related to the moduli space of G-coverings, in the sense of algebraic geometry,
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of Jacobi quartics. The ring &£/ in (1.1) is considered as an algebra over MSO}, via

a ring homomorphism MSOF ﬁ» st 2 We called @ the rwisted elliptic genus.

In this paper we shall give a description of o@//z(Ef X X'), where X is a finite
G-CW complex, # is any family of subgroups of G, and EZ is the universal .#-free
G-space. Applying this description to suitable families of subgroups we shall obtain
in particular a description of the elliptic cohomology (tensored by Z[1/|G|]) of the
classifying spaces BG and B(N,G), where N is any normal subgroup of G.

The layout of this paper is as follows. In Sections 2 and 3 we shall describe briefly
the results of [12]. Firstly, we shall discuss different aspects of the coefficient ring &£7; .
Secondly, we shall study the cohomological properties of the functor X H@@/’/g (X).
The most important section of the paper is Section 4, where we shall prove the main
results of the paper. Finally, we shall explain how some of the rings of generalized
characters of Hopkins, Kuhn and Ravenel arise naturally from our results.

2. The ring £€£7, and its ideals
2.1. Basic definitions

We shall denote the complex upper half plane by b, and we shall write I(2) for
the group

a b |
{(e d) € SL(2,7)

If G is a finite group of odd order and we write 7G for the set

eEO(modZ)}. 2.1)

{(91.92) € Gx G lg192 = g2} (2.2)
then the group I5(2) x G acts on the left on 7G x [, by
a b p e b oae ] at+b
((e d>,g> X ((91,92),7) — (g(yﬁ’yz .91 °98)9 ‘,eHd). (2.3)

The action p induces, for each k£ € Z, an action p; of I4(2) x G on the ring of functions
¥ : TG x b, — C. The action p; is defined by

a b - —k d —¢ —b av —1 at+b
Pk((e d>,g>19((gl,gz),r)—(er+d) ﬁ(g(gng Y )

(2.4)

We shall say that a function & : TG x b, — C is holomorphic if and only if for each
element (gy,¢92) € TG the function ¥((g1,92), —) : b, — C is holomorphic in the usual
sense of the word. It is easy to see that the action p; preserves the holomorphic
functions.
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Definition 2.1. The group &77; 2k is the Abelian group whose elements are the holo-
morphic functions ¥ : TG x b, — C that satisfy the following conditions:

W) pe (¢ 0)g) 9=, V(¢ s9) € 1o2) %G
(2) for each (gi,92) € TG the functions

H(g1,92), =) : b, — C, and ¥'((g1,92),7) = T *9((g1,92), —1/7)

have power series expansions at /0o of the form

9((91,9).1) = Y ag"™l, P (g1,92),7) =Y bag" ",
n>K n>K
where K € Z, q = exp{2nit}, and a,,b, € Z [1,1/|G|,exp {27i/|g192/}] ;
(3) Let Cy(G) be the centralizer of g; in G, and let = exp{2ni/|C, (G)|}. If n
and |C,,(G)| are coprime, and o, is the ring automorphism of Z[1/|G|,y] defined by
a.(Y) = ¢", then

n(am(91,92)) = an(91,85)s  u(bm(91,92)) = bm(91,95). (2.5)

The group structure in /7, is induced by the sum of functions.

Remark 2.2. The second condition in the definition of &77; % is, from the point of
view of modular forms, the strongest possible integrality condition [18, p. 80, (Ka-12)].

Remark 2.3. The action of (Z/|C,(G)|Z)* on the group C, (G) appears in repre-
sentation theory [16]. The action of g, on the coefficients a, is associated to the
usual Galois action of the group (Z/|C,,(G)|)* on modular forms of higher level
[22, Ch. 6, Section 3].

The third condition in Definition 2.1 implies that for all the elements g; € G the
functions a,(g1, —) and b,(g;, —) belong to the ring R(C,,(G)) ® Q, where R(C, (G))
denotes the ring of complex characters of the group Cg4 (G); see [16, Proposition 1.5].
Using the second and third conditions, and the usual scalar product of class functions
on G [29, part 1, Section 2.3], we can see that a,(g;,—) and b,(g,,—) are indeed
elements of R(Cy, (GVH[1/|G|].

Remark 2.4. If 9 € 6//;% and o' € 62/;% | then 90’ € &£, ****") Hence, the direct
sum &4y = Dicz 6t 2k has a natural structure of a graded ring.

2.2. The Green functor structure of €}

Let 4 be the category of finite G-sets. If S is an object of %, then it has a decom-
position
S =G/H UG/H, U --- U G/H,
into a disjoint union of orbits of G/H;. We define a graded ring rf/fs* by the equality
EUS =Sl & B EUY,
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where the ring structure is induced by coordinate-wise multiplication. Let H and K be
two subgroups of G. If HCK and d€&y, then we define resth ) €
&¢¢}; as the restriction of 9 to the subset TH x b, of 7K x b,. If H is a subgroup
of G, then we shall write [ for the kernel of restf,.

Let g€ G, and let ¢y: H — gHg™' = 9H be the map defined by conjugation by g.
Then ¢, induces a map &, : TH x b, — T9H x b . We define c}: 84/, — &/} by
¥ — 9¢,. Finally, if H CK, we define ind}, : &2£5 — &4/ by the following formula:

(ind{((g1.02). )= > Hg '919, 9 929, 1),
gHe(KiH )¢gh.92]

where (¢1,92) € TK and (K/H)[g1,9:] = {gH € K/H | gigH CgH, i=1,2}.

The morphisms restf and indf admit canonical extensions to homomorphisms of
groups tests, : &4 — &44% and indY : 644% — &/¢F for any pair of finite G-sets S
and S’ such that S’ C S. An analogous statement is true for the morphisms c;‘. One can
see that this family of morphisms induce a structure of a Green functor on S — &7/%
[12, Section 3]; see for example [33, p. 275] for a definition of Green functors. A
structure of Green functor is typical of the coefficient rings of multiplicative equivariant
cohomology theories.

Among the Green functors there exists a universal object called the Burnside ring.
The Burnside ring A(H ) of a finite group H is the Grothendieck ring of the monoid #
of finite H-sets, where the addition is induced by the disjoint union of H-sets, and the
product is induced by the product of H-sets. That the Burnside ring functor is universal
among the Green functors means that given any Green functor G, in particular 77,
there exists a natural transformation of functors A(—)— G [33, Proposition 8.12]. Let
us recall that, as a consequence of [32, Proposition 1.2.3], the unit | of A(G)®Z[1/|G|]
can be written as an orthogonal sum of idempotents ey, one for each conjugacy class
of subgroups of G; therefore there exists a decomposition

A(G) ® 2[1/|G|] = P end(G) ® Z[1/|G]].

This decomposition induces a similar decomposition in any Green functor.

Lemma 2.5 (Devoto [12,Lemma 3.10]). Let ey € A(G) be an idempotent corre-
sponding to the conjugacy class of a subgroup H C G. Then eHé‘Y/z = 0 unless
H = {(g1,¢2) for some pair of commuting elements (g1,92) € TG.

Remark 2.6. The formula for the product [G/H]Y, 196«5’//5‘ can be easily derived
from [32, Proposition 6.2.3]. Lemma 2.5 follows from this formula and the explicit
description of the idempotents e;; given in [3,36].

Corollary 2.7. Let 7 G be the category whose objects are the subgroups of G of the
Jorm {(g1,g>), where (g\,g2) is an element of TG, and whose morphisms are generated
by the inclusions of groups and the conjugation by elements of G. Then
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(1) The family of restrictions @@//g — &t )<kg|, gy Induce an isomorphism

EE— lim EMF, . (2.6)
G {g1.92)

(ay 92}

(2) The family of induction morphisms induce an epimorphism

Nim 8007, — 645 (2.7)

SURAY

(3) If C(TG) is a set of representatives of conjugacy classes in 7 G, then

s~ @@ Heepy" (2.8)
HeC(TG)

where W(H) is the Weyl group of H.

Remark 2.8. Formula (2.6) follows directly from Lemma 2.5 and the theory of Green
functors. This formula implies, by [32, Theorem 6.3.3], formula (2.7). Finally, the last
formula follows from our Lemma 2.5; using the exact sequence 6.1.4, Proposition 6.1.6
and the formula 6.1.8 of [32]. See [32, Corollary 7.7.10] for a similar formula for the
representation ring.

Remark 2.9. In formula (2.8) one should take in principle the localization of &7/ at
a certain subset S(//) determined by H. This is not necessary since we proved in [12]
that the elements of S(H) are units of &//,.

Remark 2.10. Let us remark that we can obtain the W(H )-invariant elements of &// Z
using the projector p = (1/|N(H)|)ZH€N(H)c3‘, where N(H) is the normalizer of H
in G.

2.3. The structure of (1%
In this section we shall consider two problems.
Problem 1. We want to find generators of 77, considered as an algebra over &7/

Problem 2. We want to show that the functor M — M ®g4,+ /7, from the category
of graded modules over £7/* to the category of graded modules over &§7/7; is exact.

In order to solve both problems it suffices, by Corollary 2.7 and Remark 2.10, to
consider the case G = (g, h) with gh = hy; hence in this section we shall always assume
that G has this form.

As G is Abelian, then 7G = G x G and Cy(G) = G, ¥g € G. Let i be the homomor-
phism of groups from (Z/|G|Z)* to GL(2,Z/|G|Z) defined by i(n)= (} ). Using this
homomorphism we see that the actions of (Z/|G|Z)* and SL(2,Z) on TG are induced
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by the action ¢ of GL(2,Z/|G|Z) on TG given by
a b v e —
(e d) X (g1,92) — (919, .9, "95). (2.9)

We shall fix a representative [g, g} in each orbit (g;,g2) of ¢ and write I'([g1,92])
for the isotropy group of [¢gi,¢2] in Tp(2). We shall denote the set of representatives
[g1.92] by S.

Definition 2.11. The group &7/ *(I'([¢1,42])) is the group of holomorphic functions
¥ : b, — C such that the following conditions hold:
(1) 9(x) = (et +d)*9((at + b)/(er + d)), forall (* °) € I'([g1,921);
(2) If 7y is any cusp of I'([g1,¢2]), and (° %) € SL(2,Z) is a matrix that trans-
form the cusp ico into the cusp 7o, then the function ¥/(t) = (et+d ) 9(at + b)/

(et + d) has a power series expansion at ioo of the form ¥(7) = anm ang*™1o

with a, € Z [%,ﬁ,exp2ni/|0|} .

We define &% (I'([g1,9:1)) = B, &/~ (I([g1,92]))-

Let

A5~ P & (T g1,920))
[g1.9:]€$

be the ring homomorphism defined by
A = > Hgi.gal—).

[91.92]€S

Remark 2.12. Using the transformation law of Definition 2.1 (1) we see that we can
obtain the power series expansions of a function A(¢#) at any cusp of I'([g1,92]) by
considering the expansions at ioo of the functions 9((gy,¢2),7) or ¥'((g1,42), 1), where
(g1,9>) are suitable elements of the orbit (g;,g>). From Definition 2.1 (2) it follows
therefore that the function A(?) belongs effectively to &7/ (I'([g91,92])-

Remark 2.13. The Galois action of (Z/|G|Z)" on the rings &4 (F([g1,92]))
[22, Ch. 6, Section 3] induce an action g of (Z/|G|Z)" on @[ghgz] & (K'([g1,921))-

Proposition 2.14. The morphism A is an isomorphism.

Proof. We shall define an inverse @ of A. Let @ =& O, be an element of
®[gl,gz]ES ELL*(F([g1.92])). If (B, hy) is an element of TG, then there exists [g), 2]
€S and a matrix (3 7) in GL(2,Z/|G|Z) such that (% 7) x[g1,921= (1, h2). Let n be

the determinant of (} J’) Then we can write

()= ((20))
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where (f S) €Ty(2) and p:IH(2) — GL(2,Z/|G|Z) is the projection. We define

, at+b
h = j d)™* — )
PON(h1,h2).7) = 01/(i(n)) ((er+ IS (eT . d))
It is not difficult to check that ¢ is well defined and that it is an inverse of A. From
the integrality condition (2) in Definition 2.11 it follows that @(©) satisfies condition
(2) in Definition 2.1.

The rings &4(I'([¢1,92])), as the rings of classical modular forms of higher level,
have a modular interpretation related to elliptic curves; see, for example, [22] for the
classical case. The main difference is that, due to the integrality condition (condi-
tion (2) in Definition 2.11) in the coefficients of the expansions of the elements of
& (I([gh, g2])), one has to work with elliptic curves defined over general schemes
and with the arithmetic moduli of elliptic curves; see [11, Introduction]. We shall recall
briefly some relevant definitions and results from [11,19].

P .
Definition 2.15. Let S be a scheme. Then an elliptic curve E:E— S over S is
a proper and flat morphism of relative dimension at most one and constant Euler—
Poincaré characteristic 0, together with a section s: S — E. We shall also write E|S for

an elliptic curve E LS.

We shall write Qs ", E for the invertible sheaf of relative differentials, and define
wg|s = px(Lgis)-

An elliptic curve admits a unique structure of group scheme such that the section s
is the identity element. Let [n]: £ — E, for n € N, be the map induced by multiplication
by # in the group scheme structure on the elliptic curve. Then, if # is invertible in S,
the map [n] is étale. We shall denote the kemel ker [n] by E[n].

Definition 2.16. Let 4 be an Abelian group. An A-structure on an elliptic curve £ — S
is a morphism of abstract groups ¢:4 — E such that the effective Cartier divisor D,
of degree #4 defined by

D;=> [$(a)]

acA
is a subgroup of E|S.
. - P
Let Ell be the category whose objects are the elliptic curves £ — S and whose
morphisms are the commutative squares

E — F
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such that E=S xg E’. A moduli problem .# is a contravariant functor .# from
Ell to the category Sets of sets. A moduli problem .# is called representable if
and only if there exists an elliptic curve £, — S, and a natural isomorphism of
functors @:. % —[—,E,; — Sylen- If .4 and .47 are two moduli problems, then the
simultaneous moduli problem .# x A" is the functor defined by .# x 4(E|S)=
M(E|S) x N (E|S).

Example 2.17 (4-structures). Let A be an Abelian group. Then the moduli problem
of A-structures .#, is the functor

E—{®:4—E|¢® is an 4-structure}.

Example 2.18 (Iy(n)-structures). The moduli problem of I'y(n)-structures is the set
of isogenies a:E — E’ of degree n such that locally fp.p.f. (faithfully flat of finite
presentation) ker « admits a generator.

Example 2.19 (Jacobi structures). The moduli problem of Jacobi structures is the
functor .#; that assigns to each elliptic curve £ — § the set of pairs (x, @), with «
a Iy(2) structure on EIS, and @ an (s basis of wpgs.

Definition 2.20. A modular form [ of level A and weight k is a rule that assigns to
each triple (£|spec(R), ¢, w) formed by an elliptic curve E|spec (R) over the spectrum
of a ring R together with an A-structure ¢ on £ and a basis @ of wg|spec(z) an element
of R in such a way that the following conditions are satisfied:

(1) The element f(E|spec(R),¢,w) depends only on the R-isomorphism class of
the triple (E|spec(R), ¢, w).

(2) If Z is a unit of R, then f(E|spec(R),d,iw)=Ai"*f(E|spec(R),d,w).

(3) The formation of f commutes with arbitrary extensions of scalars,

We shall restrict our attention to elliptic curves £ — S defined over schemes where
2 is invertible. Since elliptic cohomology is defined over Z[%] we do not lose any
generality.

Proposition 2.21. The pair formed by the universal Jacobi quartic E; of equation
Y2=1-20x%+ex*

defined over Z[1/2,8,¢6,A7"| and w=dX]Y represents the moduli problem of Jucobi
structures. We shall write S; for the spectrum of’Z[%,é, e, A7

Remark 2.22. The proof of this proposition is similar to the proof of [13, Proposi-
tion 2]; this proof deals with the case S =speck, where k is a field of characteristic
different from 2 but it can be easily modified, using the techniques of [19, Ch. 2], to
cover the general case.

We shall be interested in the simultaneous moduli problems .#, , = .4, x .4, where
A={g1,92) for some pair (g,92) € TG. For simplicity we shall restrict the discussion
to the case A=17/nZ x Z/nZ. The general case can be obtained using the results of
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[19, Ch. 7]. Let .#;(n) be the affine subscheme of E;[n] x5, E;[n] consisting of pairs
of points (P, Q) that form a basis of E;[n]. Let

E.j=E; xs, My(n)— M(n)

be the elliptic curve obtained from E; by change of basis; note that .#/;(n) has a natural
structure of scheme over S,. The curve E, ;|.#;(n) has a canonical Jacobi structure
(2, w) induced by the Jacobi structure of E; and the canonical Z/nZ x Z/nZ-structure
p induced from .#,;(n). From Lemma 3.6, the result 4.2, and Theorem 5.1.1 of [19] it
follows that (E, |- #;(n),a, B, w) represents .4 z/nzxz/nz.J-

If / is a modular form of level (Z/nZ x Z/nZ,J ), then f is completely characterized
by its value f(E, |- #;(n),a, B, w) € O(4#;(n)); therefore we have an inclusion

01 (D(n)) C €Uy (n)). (2.10)

Let us describe the scheme .#;(n) explicitly. The multiplication by n in £, is
described, see [17], by

X = X" F(X ~E (X, 2.11)
[n]Y = YG,(X)F, (X)), (2.12)

for certain polynomials F,, G, 65//*[X]; we shall write T,,(X):X":F,,(X‘l ). There-
fore

C(Ejn])= &4/ X, Y]/ (Y? = 1 +20X% — eX*, T(X), G, (X )Y = F(X ).

We shall write ((E;[n])=&"[x, y] and C(E;[n] x5, E;[n]) = &/¢*[x1, y1,x2, v2]. For
each pair (a,b) € Z/nZ x Z/nZ such that (a,b)# 0 we have an element S, 5, € ("(-#;(n))
defined by

Sa.t)(P, Q) =x(aP + bQ), (2.13)

where aP + bQ € E;[n] is obtained using the group structure of E;[n] and x is the
restriction of the X-coordinate of the universal Jacobi quartic. A pair (P,Q) is in
L#y(n) if and only if S, 5 (P,Q)#0 for all the pairs (a,b); hence

C(My(n)) = C(Ey[n] x5, E;[nDIS )]

It is easy to see that x; =50y and x; = S0,1). Using the addition law for the Jacobi
quartic [17,23] one can easily see that

" :l (1— 82S(4I,()))S(2,0) and . l (1— IIZS(“()’]))S((),Z)
’ S(1,0) 2 Si0.1)

>

2

hence C(.4#;(n))= &1 *[S(a,b),S(;’lb)]. We shall see that the elements S, ;) and their

inverses are modular forms of level I3(2) and weight 2. Therefore the inclusion (2.10)
is really an equality.
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Remark 2.23. If F is any Jacobi quartic over any ring R where n is invertible, then

we can always define “functions” S(Eu’ py 8 In (2.12).

Remark 2.24. If F is defined over a field &, then &(S(, p)) is isomorphic to the exten-
sion k(x) obtained by adjoining the points of order n of F

We can now discuss an analytical interpretation of the elements Sy, p). Let s(u, 1) be
the function defined by

B 1 = (1—-q")
(s(u, 1)) = 2sinh(u/2) H [(1 —g"e*)(1 —gqre™)

_]"

(2.14)

n=1

Then the functions s(u,7) and s'(u, 1) (8/0u)(s(u, 7)) parametrize the Jacobi quartic
yE=1—28x* + ex*.

where (), &(t) are modular forms for the group I'¢(2). Let ¢ be a natural number
bigger than 2. Then we shall call

Sap)(T) =S (4ni (E+é,r>,r). (2.15)
C C

The functions s, 4)(7) are the analytical version of the algebraically defined S, 5); see
the last pages of [14] where one can alsc see the modular properties of these functions.

Proposition 2.25. The ring &4/ is a flat &% -module.

Proof. The moduli problems I'(g1, g>),.J are flat (this is due to the fact that the problem
I'(n), n>3 is flat [19]). Therefore &//*(I'(g1,g2)) is flat over &//™. The proposition
follows from Corollary 2.7 and the existence of the morphism A. We refer to [7] for
another proof of the fact that rings of modular forms of higher level are flat. [

2.4. The ideals of &t£;

The groups HCG generated by a pair of elements g,4 such that gh = hg play a role
in equivariant elliptic cohomology similar to the role played by the cyclic groups in
equivariant K-theory.

Definition 2.26. We shall write 7 G for the family of subgroups of A of G such that
there exists an epimorphism 7Z x Z — H.

Let P be an homogeneous prime ideal of §#/5. Then we shall say that a subgroup
H of G is the support of P if the following conditions are satisfied.
(1) There exist an homogeneous prime ideal P’ of &//;; such that

P = (rest$)~'(P).



J.A. Devoto! Journal of Pure and Applied Algebra 130 (1998) 237-264 247

In this case we shall say that P comes from H.

(2) If H'€H is any subgroup, then P # (rest,)~'(P") for any homogeneous prime
ideal P" of &#(7,.
The support of an homogeneous prime ideal is defined up to conjugation.

Proposition 2.27. The support of any homogeneous prime ideal P € 6//; is the con-
Jugacy class of a subgroup He 7 G.

This result follows from (2.8). The following corollary is a general fact. The proof
is basically the same as the proof of [27, Proposition 3.7].

Corollary 2.28. Let P be an homogeneous prime ideal of /(% and let H be a sub-
group of G. Then the following statements are equivalent:

(1) P comes from &t} via the restriction &415 — E(14.

(2) The kernel ker (6//’5 — &4} is contained in P.

(3) The localized module {8¢/53}p #0.

Corollary 2.29. Let H be a subgroup of G. If K is in the support of an ideal P of
&ty then K is in the support of (r$)~'(P).

3. Equivariant elliptic cohomology

3.1. The geometric twisted elliptic genus

Recall that the universal elliptic genus @ :MSOx —>Z[%][(5, ¢} can be defined using
a K-theoretical characteristic class, called Wirten’s characteristic class,

0:KO* — K*[[q]]. (3.1)

The notation in (3.1) is the following:we write KO* for real K-theory and K* for
complex K-theory, g is a formal variable, and K*[[¢]] is the functor that assigns
to each space X homotopy equivalent to a finite CW-complex X the ring of formal
power series in ¢ with coefficients in K*(X); see [12,24,26] for a precise definition of
Witten’s characteristic class, and [21, 28] for references about the elliptic genus. When
X is a spin manifold, the elliptic genus evaluated in the bordism class defined by X
has a geometric interpretation in terms of S'-equivariant operators on the space of free
loops on X [28,35]. This interpretation is related to the theory of non-linear sigma
models [34].

We will define our equivariant version of the elliptic genus using a twisted general-
ization of Witten’s characteristic class. The definition of this class is motivated by the
theory of orbifold sigma models. Our “twisted” version of the functor K*[[¢q]] is the
functor ¢ : G-spaces — Rings given by

AFX)= @ AKX @2 R(g2) Mg, (3.2)

(g.42)ETG
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where X is a compact G-space, X% = {x € X | g1x = gx = x}, and R({g2)) is the ring
of complex characters of the group generated by g;. It is not difficult to show that .#;
is, in the sense of [32, Definition 6.7], a G-equivariant cohomology theory.

Let X be a compact G-space, and let £ — X be a G-equivariant complex vector
bundle. Then, for each pair (g, 92) € TG, the restriction E|xs.s; — X992 admits a de-
composition

E|xuns = b a Fy o, (3.3)

—lgl2 <j<lmliz \ —lg2l/2 <k <lg2)i2

where the (g),g2)-equivariant complex vector bundles Fj; are characterized by the fact
that g, acts fiberwise as exp{2nij/|gi|} and g, as exp{2nik/|g2|}. We define

EG(E|X141>«2) = —lgi|l2<j<|pnl/2 ®(/\[w2k,'c’][_q2$—l] [F}k])

A!gzl/'2<k<|.f12|/2 s=21

2 ) Sy gy [FiD) |- (3.4)

520

In (3.4) we are taking ¢ = |gi1|, ¢’ = g2, s=(nc+j)/c with n€ Z, and R({g>)) = Z[w].
If £ is a real G-equivariant vector bundle, then we define

OG(E|xn0:) = 06((E @ C)|xann). (3.5)

The conventions used in the decomposition of (E ® C)|x«.«2 are the usual ones in
index theory; see [6]. In [12] we showed that 0 has an extension to a G-equivariant
stable exponential class, which we called Witten’s twisted class,

06 : KO} — AL

Let X be a closed, oriented, compact, Riemannian manifold of dimension 2k where
G acts by orientation-preserving isometries. We shall assume, just to simplify the for-
mulae, that each X992 is connected. This is a minor assumption that can easily be
removed. As the order |G| of G is odd, the orientation on X induces an orientation on
each one of the submanifolds X992 [6, p. 584]. Recall that, since BSpin and BSO are
homotopically equivalent at odd primes [31, p. 336], orientable manifolds are orientable
for K* ® Z[%]—theory. Therefore, for each pair (g¢,,¢,) € TG, there exists a Gysin map

1
LGRS G0 AL YW A [5} —KX(p)®Z [%}

induced by the projection = : X499 — pt. The family of maps n{"*% induces a Gysin

map 7 : HG(X)— A '
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Definition 3.1. The geometric twisted elliptic genus ®¢ is defined by the equality

05([TX]) ) _

To(dm(TX)]) S @) Aol pt),

(91.92) € TG

Po(X)=m (

where [dim(7X )] is the element of K;(X') that we obtain if we replace all the bundles
Fj in formula (3.3) by topologically trivial bundles T, where dim¢ T = dime Fj; and
where g, and g, act in the same way as in Fy.

Remark 3.2. Besides the class @, Witten considers in [35] two characteristic classes
related to @ by elements of SL(2,Z) not in I'x(2). We shall be interested in one of
01

these classes, which we shall denote by 51, that is related to the element . We

shall write @’ for the genus associated to it. This genus has, as the elliptic genus, a
natural geometric interpretation as the S'-equivariant index of some operator of Dirac
type on loop spaces. The study of the equivariant index of this operator on twisted
loop space leads us to two objects: an equivariant generalization EIG of @ and a “new”
twisted version @, of the elliptic genus. For simplicity we shall only give here the
contribution of the bundles Fj to @(X). Using the splitting principle it suffices to
consider the case dimcFy = 1, in this case the contribution of Fj to ®,(X) is

V2(mA1/2—kic' V| (m1/2—kfe" ) p(2¢ mc’ 12— 2k)
[ZkeNq / #( / )ij

(-1’ (3.6)
[ZkeN q]/'Z(m+1/2—k/c’)2#(m+l/2—k/c/)em’(m+l/2—k/c’ )Fj(_l‘?t"'n+c’/272k>]

where y = exp2mij/c. The series involved in (3.6) are related to the power series
expansions of theta functions with characteristics.

It is easy to show that @ induces a ring homomorphism Q$ — 45 ( pt), where QY is
the geometric oriented equivariant bordism of [8]. As we are interested in cohomology
we shall suppose that @ it is defined on Q% =QY,.

Pick t€bh_ and let g = exp{2nit}. We define D@G(X)((g1,42),7) as the evaluation
of &g(X99) at g, and . The evaluation at g, is done via the identification between
representations and characters.

Propeosition 3.3. The functiqn (91,92): 1) — Pc(X X(g1,92),T) belongs to the ring
ET.

Proposition 3.4. The twisted elliptic genus defines a graded ring homomorphism &g :
QFf — 6117

Remark 3.5. The proof of both propositions can be done using a cohomological for-
mula, obtained using the Pontrjagin character, for the twisted elliptic genus; see [12,
Section 2] for the details. We still have to check that if X € Qf, then the function
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P (X)) satisfy all the conditions of Definition (2.1). This follows from the cohomolog-
ical formula for the twisted elliptic genus, the transformation laws for theta functions
with characteristics which can be found in [12, Section 2] or [17], and the fact that
the expansion of the functions @¢(X)'(g1.g27) correspond to the series @;(X ), where
&y is the genus of Remark 3.2.

3.2. Homotopy-theoretic equivariant oriented bordism

Let (X,A4) be a pair of G-spaces. Using cellular approximation we can suppose that X
is a G-CW complex and that 4 is a G-CW sub-complex. Then, for each real orthogonal
representation ¥V of G of dimension |V], there exists a suspension homomorphism

a(V): QU X, A)— QF, ) (DY) x X,(D(V) x A)U(S(V) x X)), (3.7)

where D(V') (respectively S(¥)) is the unit disk (respectively the unit sphere) in V. if
(M,0M) — (X, A) is a representative of a bordism class [X ] € QY(X,4), then a(V )([X])
is the bordism class of

(D(V) x M,0(D(V) x M))— (D(V) x X,(D(V) x A)U(S(V) x X)).

Remark 3.6. If V and W are two finite-dimensional real orthogonal representations
of G, and VN W =0, then o(V & W)=0(V)o(W).

Remark 3.7. If V is a non-trivial representation, then the suspension o(¥'), is not, in
general, an isomorphism.

Let % be an orthogonal representation of G that contains an infinite number of times
each finite dimensional representation of G. We shall write F% for the set of finite
dimensional G sub-spaces of %. We define an order < on F# by: V < W if V is
isomorphic to some G-submodule of W. Using this order, and Remark 3.6, we see
that {Q$(X x D(V),(D(V) x A)U(S(V) x X))} is a direct system of graded groups
indexed by the ordered set F%.

Definition 3.8. Let (X, A4) be a pair of G-CW complexes, 4 C X. The homotopy theo-
retic equivariant oriented bordism group MSOS(X,A) [10, p. 72] of the pair (X, A4) is
the graded group defined by the equality

MSOS (X, A)= 1im QF,, (D(V) x X, (D(V') x A) U (S(V) x X)). (3.8)

Verw

Remark 3.9. The way in which the theory MSOY(X,A) has been defined corresponds
to the definition of [10] only when the order of the group is odd. The reason is that,
for |G| odd, the universal equivariant orientation in the sense of [10] is completely
determined by an orientation preserving action of G [9, Section 6].
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3.3. The homotopy theoretic twisted elliptic genus

Using the explicit description of MSOY given by (3.8) we see that in order to
extend the domain of definition of @ to MSOL = MSOY, it suffices to define, for
each V € F%, a morphism

@l Q0 (DV).S(VY) = 0n, 1 (E(V)) — 647,

n+{V|

where X(V)=D(V)/S(V), in a way compatible with the suspension maps (3.7).

Let us suppose that G = (g, h) with gh=hg. Let (M,0M)— (D(V),S(V)) be a rep-
resentative of a bordism class [X] in Q¢(D(V),S(V)). In the definition of ®/.(M,M )
{g1.¢2.7), where (¢1,92) is an element of TG, we have to consider two cases.

Case 1: Suppose that G = {(g;,¢,). Then ¥ admits a decomposition

V="V @ (Bpnihi)

where Vy={veV|gv=v.Yge G}, Vy are the non-trivial irreducible representations
of G and nj is the multiplicity with which the representation Vj; appears in V. We
shall write V| = EB./'A‘ nix Vi

The suspension a(Vy): QU(D(V)),S(V1)) — QYD(V),S(V)) is an isomorphism.
Suppose that (N, N ) 5 (D(V), S( V1)) represents the class ¢~ ' (¥,)([X]). By hypoth-
esis D(V, )79 =0 so N9 C p~'(0). Let TNyu.. be the restriction of the tangent
bundle of N to N¥-%. Then we have a decomposition TNys.e: = TF ® NF of TNy
into the part TF tangent to the fiber of p: N — D(V) and the normal part NF. Then
we define

DGM, oM )gr. g2, 1) = [ [ 5" (D)
&

DPG([TF]) g9
<m’[’v ’]>' B9

The conventions in (3.9) are the same that we used in Definition 3.1. The functions
six(7) are the functions defined in (2.15).

Cuase 2: Suppose now that H = (g,,g2) # G and let V' and (M',0M’) be the repre-
sentation » and the manifold M with the H action. Then we define

LM, MYy, g2, T) = Py (M, 0M )41, g2, 7). (3.10)

where the right-hand side is defined as in case 1.

It is not difficult to see that the family of morphisms @/ induces an extension &
of the geometric twisted elliptic genus. If G is now any finite group of odd order, then
we define @ : MSOY — &//$ as the composition

PR . . rest ~! .
MSOS - lim MSOY « -2 tim s/t "= &1/8, (3.11)
where 7 is induced by the restriction morphisms rG : MSO$ — MSOY, & is induced by

the family of morphisms @, and rest! is the inverse of the homomorphism defined
in (2.6).
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Let Ayso = [HP?([CP?)? - [[H][P’Z])2 € MSO« C MSOS . Then ®g(Ayso)=A e &S,
As 4 is invertible in &//¢ the twisted elliptic genus admits a factorization

D
Mso¢  — . &S

78 .
MSOS[i-] —— &S

We define msoX(X,4)=MSOX(1/|G|,1/Ausol(X.A). 1t is easy to see that mso(; is a
G-equivariant stable multiplicative cohomology theory.

Proposition 3.10. The homotopy theoretic twisted elliptic genus ®¢ : msol — 64/ p
a transformation of Green functors.

Proposition 3.11. The homotopy theoretic twisted elliptic genus ®¢ : msof — ST is
an epimorphism.

Proof. Using Proposition 3.10 and Corollary 2.7 we see that it suffices to consider the
case G=/{(g,92). In this case it suffices to prove, using the isomorphism A, that if
{g1,92) = G, then V0 € & (I(g1,42)) there exists [M] € mso such that ®g([M])=0.

By the structure theorem for Abelian groups we can suppose that G=Z/cZ x Z/c'Z
where ¢’/c. We shall discuss the case ¢/ = ¢ and refer the reader to [12] for the general
case. In this case

S (Io(€) N 15(2)) = 6L [5(a,b)s Sary (D] (3.12)

where s(,,5)(7) are the functions defined in (2.15). The functions s(,s)(7) can be ob-
tained applying the homotopy twisted elliptic genus to the Euler class of the irreducible
representation ¥, ) of weight (a,b) of Z. x Z.. Applying formula (3.9) to suitable
elements of MSO}, we can see that the elements s(_a‘lb)(r) are also in the image of the
twisted genus. [

3.4. Equivariant elliptic cohomology
We shall describe now the results of Section 5 of [12].

Definition 3.12. Let (X,4), ACX be a pair of G-spaces formed by a finite G-CW
complex X and a sub-complex A. Then the equivariant elliptic cohomology &t¢ E(X,A)
of the pair (X,4) is the graded tensor product

8t (X, A) = msog(X, A)R) 4L, (3.13)

-
InSD(7

where &//7; is considered as a graded algebra over mso} via the twisted elliptic genus.
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Remark 3.13. It is easy to show, by a simple argument of change of rings, that
811 (X, A) ~ MSOK(X, A) ®yso- ELL5.

In [12, Section 5] we showed that the functor (X,4)— é’/‘//Z(X,A) defines a
G-equivariant cohomology theory. The main point in the proof was to show that the
Green functor structures of H — mso};(X,A4) and H —wa@/f:, induces a Green functor
structure on H — &/£},(X,A). Let us quote the relevant results.

Proposition 3.14. Let H be a subgroup of G and let Iy be the kernel of the homotopy
theoretic twisted elliptic genus

by msof; — LT,
Then Iy =restr$(Ig)mso}.

Proposition 3.15. Let X be a finite G-CW complex. Then the functor H — & 1(X)
has a natural structure of Green functor.

It is straightforward to check that the restriction and conjugation morphisms of the
cobordism functor pass to equivariant elliptic cohomology. Proposition 3.14 implies
that also the induction functors pass to elliptic cohomology.

Since H ——»6’/‘//':,()(,,4) is a Green functor defined over Z[1/{G|] we can decompose
it using the idempotents ey of the Burnside ring A(G). As the Green structure of
& (* _)(X,4) is obtained from the Green functor structure of cobordism by passing to
the quotient, then ey(a®b) = ey(a)Qey(b), for any pair a € msof(X,A4), and b € 6//2
The products ey &7/¢ are described in Lemma 2.5 and Corollary 2.7. A description
of the products eHmsoé(X,A) can be obtained using [15, Lemma 2.2; 20, Lemma 4.7].
Combining both descriptions we obtain the following theorem.

Theorem 3.16. There exists a natural equivalence of functors

W{gi.g2)

5//2(X)—> @ (6407 (X9) @apr- "@//Zk.tn,gzﬂs«m.yz))'

{g1.92) €¢%

(3.14)

The sum in (3.14) is being taken over a complete set of representatives of conjugacy
classes of subgroups of the form {gi1,g2) and we localize with respect to the ser
S({g1.92)) which is the image of the ideal q((g\, g2),0)=kerey under the natural
homomorphism A(G)— &(17.

Theorem 3.17. The functor X — &£ 5(X) from finite G-CW complexes to graded
rings is a stable G-equivariant cohomology theory.

It is easy to show that the right-hand side of (3.14) is a stable G-equivariant coho-
mology theory. Theorem 3.17 follows immediately.
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4. Completion theorems
4.1, Invariance properties of cohomolagy theories

Lot 7 be a finite group, and let & be a family of subgroups which means that it 1s
closed under passing to subgroups and conjugate subgroups. If X and ¥ are two G-CW
complexes, then we shall say that a G-equivariant map f . X — ¥ is a & -equitalence
if the induced map of fixed point sets

fH .',X’H N YH
is an ordinary homotopy cquivalence for cuch subgroup /7 € # [2, p. 7).
Example 4.1. Recall that a G-space £ is called a unfversal space (or the family #
if EF" is contractible for H € # and empty for H € % ; the construction of E% can
be found in [33, Ch. 1, Section 6]. For any G-CW complex X the projection

piEF XX
is an F -equivalence [2, p. 7].
Definition 4.2. Let ./ be an Abelian calcgory. We shall say thar a functor & from

the category of G-CW complexes to .« is # -invariant if h( f) 1s an isomorphism for
every ¥ -equivalence f:X ).

4.2. Pro-group valued cohomology theorics

We shall describe briefly what we need about pro-groups; more details can be found
in {2, Section 2; 5, Section 2]. Let o/ be a filtered category; for example an ordered
set, Then an Abelian pro-group M indexed by <7 is a contravariant functor from & to
the category of Abelian groups. We shall write usually M = {4, }, where the indices
z are the objects of </ and M, = M(2). Let {M,} and {N;} be two pro-groups. We
define the set ProHom({M.}. [Ns}) of pro-homeomorphisins from {M.,} to {N;} by

Prollom({41,}, {Ng})==1lim lim Hom(M,, Ny).
—
poe

where both limits are taken in the category of groups. The category ProGr whose
objects are the pro-groups and whose morphisms arc the pro-homomorphisms between
pro-groups is an Abelian category [2. Section 2]. One can therefore define in the usual
way pro-group valued cohomology theories.

4.3. Main results

We can associate io the functor é//‘?i a pro~group valued G-cohomology theory ef/};
defined on the category of G-CW complexes. If X is a G-CW complex, then

el (XY= (£ 5(K)).
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where X, runs over the finite G-sub-complexes of X. The morphisms
iy 0 E1E(Xy) — S (X

are induced by the inclusions i,p : X, — Xj.

Let # be a family of subgroups of G. Then we can associate to # a second pro-
group valued functor X — &/£5(X )+ defined on the category of G-CW complexes.
This functor is defined by

EG(X) 5 = {640 G5 L G(X)),

where [+ runs over the finite products of the ideals /5, defined in Section 2.2, for H
an element of % .

Remark 4.3. The generalizations of elliptic cohomology that we have defined can be
also defined for every stable G-equivariant cohomology theory; see [1] for the case of
equivariant K-theory.

Theorem 4.4. The functor X — &t¢™(X) z is F-invariant.

Proof. Let us denote the reduced equivariant elliptic cohomology of a space X by

— %
¢! (X). In order to prove the theorem it suffices, by [2, Lemma 2.2], to show that
if X is a based G space such that X*/ is contractible for all H € #, then

EUL (X ) 5 = {0 (X)) 15 60 (X))}

is pro-zero, which means insomorphic to the zero object in the category ProGr; we
refer to [2, p. 11} for an explicit description of pro-zero objects of ProGr.

If H is a subgroup of G, then we shall denote its conjugacy class by [H]. Recall
that, using the A(G)-module structure of 6’//2}, we have obtained in Section 2.2 a
decomposition &4/ = @y enétLy. If K is a subgroup of G then

restS(ey &4/ %) = restS(ey yreste (41 5),

where restS(ey) € A(K). From the description of the idempotents of the Burnside
ring of [32, Ch. 1] it follows that if H is not conjugate to a subgroup of K, then
rest¢(ey ) =0. Therefore

P ensrrécik. @.1)
[H]eS

where the sum is over a set § of representatives of conjugacy classes of subgroups of
G with the property that [H]€ S if and only if [H] is not conjugate to a subgroup
of K.
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Let f be the cardinal of # and let H),...,H,; be a list of the subgroups of G
in #. We can form the pro-group

M= @ MiH={ P enéllox)

[H1CF [HCF

This system is indexed by the set of finite skeletons of X and, trivially, by the partialiy
ordered set {(ni,...,ns)|n; > 0}. By (4.1) there exists for each (a;ny,....ns) with
n;>0 an epimorphism

——3% n
Bluycr enll G(Xy) — ELGXI, .. i EG(Xy).

These epimorphisms induce an epimorphism M — &7/5(X ) in the category of pro-
groups. Therefore it suffices to show that the system M is pro-zero. We shall show that
each one of the systems M[H] is pro-zero. By Theorem 3.16 it suffices to consider
the case H = (g;,g2) for some pair (g;,92) € TG. In this case

W{g1.g2)

Yy v p ok
M[H)(x,n1,...,np) ~[60 (X)) Ry ‘g/[<gl,gz>]s(<gl,gz>)'

Milnor’s exact sequence [25] for the space X9-% gives us
0 — lim "M[H (2, n1,...,n/7)
b

A * W{g1.92)
——\[gf/ (X * )®é,//* g)//w'*g?)]S((gl‘gz))

— limM[H](a,n1,...,n7)—0. 4.2)
The first term in (4.2) is the first right derived functor of the inverse limit functor. By
hypothesis X992 is contractible and therefore the middle term of the sequence (4.2) is

zero. This implies that the inverse limit of the system M[H] is zero. Since the algebras
M[H](a,ny,...,ny) are finitely generated this implies that M[H] is pro-zero. []

Theorem 4.4 is a particular case of a “localization-completion™ theorem which we
shall describe now. If [ is an ideal of &77¢ é and S is a multiplicatively closed subset of
é"//é, then we shall associate to the pair (7,5) the family of subgroups # defined by

#=|_J{Supp(P)|PNS =0 and I C P}. (4.3)

Definition 4.5. If {M,} is a pro-&/¢}, module and S is a multiplicatively closed subset
of /47 we define

STUMY ={S7'M,}.

We can now state the localization-completion theorem.
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Theorem 4.6. The pro-group valued functor X — S~ ¢t 3(X )., defined on the cate-
gory of G-CW complexes is P-invariant.

Proof. The proof of this theorem follows closely the proof of [1, Theorem 4.1] there-
fore we shall give only the general argument and provide details in the parts of the
proof that are specific to elliptic cohomology. We refer the reader to [1, p. 5] for the
rest of the details.

By general algebraic arguments [2, Lemma 2.3] it suffices to show that if X is a

based G with the property that X* is contractible for all H € 2, then Sj ]o?f?zw(X )p
is pro-zero for each prime ideal P C 6”//2} such that PNS =0 and P D I. The notation
S,! means “localization at P”.

Let H € Supp P and let # be the family of subgroups of G generated by H. Then
we can embed X as a sub-complex of a G-CW complex Y which has the property that
YK = XX for all K which contains a conjugate of H and YX is contractible for any
other K [1]. By Theorem 4.4 ££/5(Y ) is pro-zero. It follows that S; ' &//5(Y ), and,
as by Corollary 2.28, P contains Iy, S, 15’//;(Y);3 are both pro-zero. The classical
localization results, see for example [32], imply that Sy '€ZZ5(Y)p — Sp ' E4£5(X)p
is a pro-isomorphism. This fact can also be proved from Theorem 3.16. Therefore
Sy ' 847(X)p is pro-zero. [

If # is a family of subgroups of G and E& is the universal & -free-G-space, then
Theorem 4.6 has the following corollary.

Corollary 4.7. If X is a finite G-CW complex, then the projection EF x X — X
induces an isomorphism

EUEX )5 — ECLE(EF x X). (4.4)

Proof. Let X be a finite G-CW complex. Then, by Theorem 3.2, it induces an iso-
morphism 27 (X ); —EHNEF x X )¢ Using the description of equivariant elliptic
cohomology given by the right-hand side of (3.14) it is easy to see that if ¥ is a
finite G-CW complex such that all the isotropy groups are in %, then (f//é(Y ) is
annihilated by some power of /# and hence &7/ z-(Y ) is F-adically complete. As all
the isotropy groups of the space EZ x X are in &, the pro-groups el//5S(EF x X)) are
# -adically complete. On the other hand, due to the fact that X is a finite G-CW com-
plex, the inverse system &//3(X )5 satisfies the Mittag—Leffler condition. This shows
that the algebraic completion &7/7(X )+ and topological completion &£/*(EF x X e
are isomorphic. [OJ

In particular, taking as % the family formed by the trivial subgroup {e} of G we
obtain a generalization of the Atiyah-Segal completion theorem.
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Corollary 4.8. There exist, for X any finite G CW-complex X, an isomorphism
EUEX), — ELLE(EG x X), (4.5)
where I =ker{rest{,, : EHE— 81T,

If N is a normal subgroup of G and # is the family of subgroups H of G that
satisfy H NN ={e}, then E_¢ = E(N,G) [1].

Corollary 4.9. If X is a finite G-CW complex where N acts freely, then the projection
n:E(N,G) x X — X induces an isomorphism

EUHX) g — ECLS(E(N,G) x X). (4.6)

Combining these corollaries with a standard argument in equivariant topology, that
implies that for a G space X where the normal subgroup N acts freely &7/¢(X) =~ 445y
(X/N)®[1/|G|] — we obtain a description of the elliptic cohomology of the spaces
EG xg X (E(N,G) xy X respectively) for any finite G-CW complex (a finite G-CW
complex with a free N action).

5. Relation with the work of Hopkins, Kuhn and Ravenel
5.1. Brief description of the results of Hopkins, Kuhn and Ravenel

Hopkins, Kuhn and Ravenel defined in [15] the notion of generalized characters of
a finite group G; they used this notion to give, among other things, a description of
a certain /-adic completion of the elliptic cohomology of the classifying space BG of
G. We shall show in this section how some of these rings of “generalized characters”,
namely those that are associated with supersingular curves, are naturally related to our
coefficient ring &7/, and how the description of [15, Section 8] follows from our
Corollary 4.9.

Let p be an odd prime, then we shall denote the p-adic integers by Z,, and we shall
write @p for the algebraic closure of the p-adic rationals. If G is a finite group, then
we let Hom(Z),, G) be the set of group homomorphisms 77, — G. The set Hom(Z7,, G)
admits an action of G given by

(ga)(my,...,mp)=ga(my,...,m)g"",

where g € G, « € Hom(Z", G), and (m,,...,m,) € Z';r

Definition 5.1. The ring of generalized characters of level n is the ring
Cl(Hom(Z%,G), @),

whose elements are the functions f: Hom(Z,, G)— @p invariant under the action of
G.
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Remark 5.2. One can define refined characters using Galois theory; for the case n=1
see Remark 2.3, where we used a description of R(G)® Q as a ring of Galois equiv-
ariant class functions

CI(G, @(é/))(i(@(:)\@)’

and [16, Proposition 1.5]; we shall describe here the case n =2, and refer to [16] for
the general case.

We shall briefly describe now [15, Corollaries 8.4 and 8.5]. Let ¢ be the ring of
integers in a finite extension [ of the p-adic numbers Q, with maximal ideal (n)
and residue field & = ¢/(=). The basic data of the Hopkins—Kuhn—Ravenel construction
is the choice of a ring homomorphism ¢ :&//™ — € such that @(u,) C (n), where u,
is the coefficient of x” in the p-series [p]e(x) associated to Euler’s formal group
law

¥/ 1 —28y2 + eyt + V1 — 28x2 + ext

1 — e2x2y?

E(x,v)=

Let E, be the Jacobi quartic of equation
V=1 —=20(3)x* + p(e)X* (5.1)

defined over (¢. The curve £, is naturally associated to the ring homomorphism ¢. We
shall denote the mod(n) reduction of E, by Ey. The mod p reduction of ¢(u;) can be
identified with the Hasse invariant of Ey [15,30].

If ¢(u;)=0 mod p, then the Jacobi quartic E, has supersingular reduction at p.
This implies that, for all # €N, Ey has no non-trivial point of order p". The statement
of Corollary 8.4 of [15] is that in this case

&0 (BGY (X) @, ~ Cl(Hom(Z3,G), Q). (5.2)
A
where for an &//* module M the expression M" denotes the adic completion of M
with respect to the ideal (p,u).

If @(uy)#0, then the Jacobi quartic (5.1) has ordinary reduction. The statement of
Corollary 8.5 of [15] is that in this case

61*(BG) Q) Q, ~ Cl(Hom(Z,,, G). @) (5.3)

&

This last corollary is really a statement about the theory ul_léff* [15]. We shall
therefore concentrate only in the supersingular case in which the best approximation
to equivariant elliptic cohomology occurs.

5.2. The elliptic character ring

The ring CI(G, Q(£))¢QOID) admits a natural generalization related to elliptic co-
homology. Let IK* be the graded field of fractions of the ring &7/* and let [K*(x) be
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the extension of K* obtained by adjoining all the elements S, ), defined in (2.13),
for (a,b) € Z/nZ x Z/nZ, where n=|G| and (a,b) #(0,0). It is not difficult to see that
the extension K*(x) is a Galois extension of i* with Galois group GL(2,Z/nZ). The
group GL(2,Z/nZ) acts on TG as in (2.9).

Definition 5.3. The elliptic character ring CI(TG, iK*(x))¢H>2/"2) is the ring of func-
tions

f1TG — K*(x)
that are invariant under simultaneous conjugation and equivariant with respect to the
actions of GL(2,Z/nZ) on TG and K*(x).

There exists a natural morphism ev: §2£; — CI(TG, I*(x))FHZZnD),

Proposition 5.4. The homomorphism ev induces an isomorphism

EHE © g KF 2 CI(TG, IK* (x))CLZ D), (5.4)

Proof. As K* is a graded field and ev is a IK™-linear monomorphism it suffices to
check that both sides of (5.4) have the same K* rank. The rank of the left-hand side
have been computed in [12] where we showed that it is equal to

1 .
Aer = el #{(91,92.93) € G x G x G |gig; =g,9:; 1,j=1,2,3}. (5.5)

The rank of the right-hand side can be computed as follows. Let

TG ={(41.92)0---»(91,92)n}

be a complete set of representatives of the orbits of the action of GL(2,Z/nZ)xG on
TG. We shall write S; C GL(2,Z/nrZ) x G for the isotropy group of (g;,¢2);, I; for the
isotropy subgroup of (g1,92); in GL(2,Z/nZ), and T} = p(S;), where p: GL(2,Z/nZ) x
G — GL(2,Z/nZ) is the projection.

It is easy to see that

ranke- CI(TG, ()22 = $™ rank;es l6* (07

Using Galois theory we see that ranky« K*(x): =[GL(2,Z/nZ),T}'].
We have an exact sequence

0 — Cpy(G)— S; — TI'! =0,

where C,,(G) is the centralizer of g; and g, in G. Using this exact sequence one can
see that |S;| = |I'}||C,,(G)|, and therefore the cardinal of the orbit of (g1,92); is equal
to
GL(2.Z/n2)||G| _ |GL(2,Z/nZ)||G]|
N — THIC(G))
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Then we have

|GL(2,Z/nZ)|

rankic CICTG, 16" ()220 = 37 S0

i

Z |GL(2,Z/nZ)) |T,-'[|ng(G)|
I |GL(2,2/nZ)||G]|

(91.92) €TG

1
= 1A Z |ng(G)1 = Xe&rs- d

| | (91,92) € TG
5.3. Elliptic curves over local fields

Let us recall some of the relevant aspects of the arithmetic of elliptic curves over
local fields. These results are all well known and can be found, for example, in [30].

Let K be a local field that is complete for a discrete valuation v; we shall denote
the ring of integers of K by A, the maximal ideal by (=), and the residue field by £.
Let E be an elliptic curve defined over 4 that has good reduction £, mod r; we shall
write K, for the group of torsion points of E whose reduction mod p is the identity
element of E;. If F¢ is the formal group law associated to the elliptic curve E, then Fg
induces a group structure on 7, which we shall denote by 7z, and the torsion part of
this group is canonically isomorphic to the group Eg [30]. This result is also valid for
a Jacobi quartic, provided that p=chark #2 and that we restrict ourselves to torsion
points of odd order.

5.4. {84} and the generalized characters of Hopkins—Kuhn-Ravenel

Let TG, =Hom(Z ,x Z ,,G). Then TG, can be identified with the elements (g1,¢,) €
TG such that the orders of g, and ¢» are powers of p. With this identi-
fication TG, is a GL(2,Z/nZ) x G-invariant subset of 7G and therefore the inclusion
TG, C TG induces an homomorphism

CTG, K*(x))CH22in2) 2, CI(TG,, K* (x))CL2LinD), (5.6)

Let KK*(x,) be the subfield of [K*(x) obtained by adjoining the elements S, 5, with
a and b of order a power of p. Then, due to the GL(2,Z/nZ)-equivariance of the
elements of the elliptic character ring, the map /, admits a factorization

CI(TG, K*(x))cH>2nD)
2, TG, K™ ()LD s CITG , I* (x))OL2-2i02), 57)

Let y: CITGp, K*(x, )LL) — CITG,, K*(x,))OH22/PD) be the natural homomor-
phism and let K; be the (p,u;)-adic completion of K*. Then the evaluation
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homomorphism composed with the homomorphism pi, and completion induces an
homomorphism

{6005 @16} <5 CUTG, I3 () P27, (5.8)

The homomorphism ¢ has a unique extension to an homomorphism ¢ : K; — [ and
if F(x) is the extension of F that we obtain if we adjoin the elements S(“;,b), (a,b) e
7/p'Z xZ/p'7 - {(0,0)} determined by the quartic (5.1) considered as a curve over
F, where p' is the order of a p Sylow subgroup of G, then we have a (non-canonical)
extension ¢ : K’;(x)—> F(x). Using this extension we obtain from (5.4) an homomor-
phism

(’L‘p

{6005) © KE 5 CUTG,, Fy(x)) T2 20D,
5.5. Supersingular reduction

Let us suppose now that (5.1) has supersingular reduction. In this case there ex-
ists an isomorphism 1 between the group of points of order p’/ of nz and the group
of p/-torsion points of E. Then if F(x) is the extension of @, obtained by adjoin-
ing the points of order p’ of nz 1 induces an isomorphism F(x)~ F(x’). Taking the
composition of this isomorphism with the inclusion F(x’ )-»@p we obtain an
homomorphism

CI(TG,, F(x))CH>Z/P'D _, CI(TG,, Q).
In this way we obtained an homomorphism
8005 K — CTG,, T,). (5.9)

The evaluation map ev sends /g into /;, where / is the kemel of i1/> {see 5.6). Using
the characteristic function of the set TG, it is not difficult to see that /" =/;. From this
it follows that the homomorphism (5.9) induces an homomorphism

& (BG)®Q, — CI(TG,,Q,). (5.10)

Then [15, Corollary 8.4] is the statement that this homomorphism is an isomorphism.
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