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Abstract 

Let G be a finite group of order (GI odd and let 6Y~*(-)~?@[l/lGl] denote elliptic cohomology 
tensored by Z[l/lGl]. Then we give a description of &Y*(E(N,G) x ,vX) @ Z[l/lGl], where N 
is a normal subgroup of G, E(N, G) is the universal N-free G space and X is any finite G-CW 
complex where N acts freely. We explain how some of the results of Hopkins-Kuhn-Ravenel 
can be recovered for our results. @ 1998 Elsevier Science B.V. All rights reserved. 

AMS Cluss$ication: 55N20, 57T99 

1. Introduction 

In [ 121 we defined, for any finite group G of odd order jGl, a multiplicative 

G-equivariant cohomology theory at&,*. This theory is a G-equivariant generaliza- 

tion of the cohomology theory X + &X/*(X) @Z Z[l/IGI], where &tt* is the elliptic 

cohornology of Landweber, Ravenel and Stong [21]. For this reason we called A@/: 

rquivariant elliptic cohomology. If X is a finite G-CW complex, then &/f:(X) is 

defined by the equality 

where MSUg(-) is the integer graded version of the homotopy theoretic-oriented equi- 

variant cobordism functor of [lo], MSO; = MSOz(pt), and &Ptz is a graded ring 

closely related to the moduli space of G-coverings, in the sense of algebraic geometry, 
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of Jacobi quart& The ring &ttz in (I .l ) is considered as an algebra over MSO; via 

a ring homomorphism MSOZ + 8/e:. We called @G the twisted elliptic genus. 

In this paper we shall give a description of &/&E4 x X), where X is a finite 

G-CW complex, P is any family of subgroups of G, and EF is the universal <P-free 

G-space. Applying this description to suitable families of subgroups we shall obtain 

in particular a description of the elliptic cohomology (tensored by Z[l//GI]) of the 

classifying spaces BG and B(N,G), where N is any normal subgroup of G. 

The layout of this paper is as follows. In Sections 2 and 3 we shall describe briefly 

the results of [ 121. Firstly, we shall discuss different aspects of the coefficient ring 8L’t:. 

Secondly, we shall study the cohomological properties of the functor X --f &/G(X). 

The most important section of the paper is Section 4, where we shall prove the main 

results of the paper. Finally, we shall explain how some of the rings of generalized 

characters of Hopkins, Kuhn and Ravenel arise naturally from our results. 

2. The ring &Jk$ and its ideals 

2. I. Basic definitions 

We shall denote the complex upper half plane by h+, and we shall write TO(~) for 

the group 

{(z i) E’SL(2,,)c = O(modz)j ‘. (2.1) 

If G is a finite group of odd order and we write TG for the set 

{(.q1,~2) E G x G I glg2 = y2gl}, (2.2) 

then the group TO(~) x G acts on the left on TG x l,~+ by 

(2.3) 

The action p induces, for each k E Z, an action Pk of T,(2) x G on the ring of functions 

19 : TG x b+ + @. The action yk is defined by 

fl((g1,92),5) = (ez +d)-kd 
UT + b 

g(&C&%)g-‘> a 

(2.4) 

We shall say that a function 79 : TG x b+ + @ is holornorphic if and only if for each 

element (gl,y2) E TG the function 79((gl, g2), -) : 6, + C is holomorphic in the usual 

sense of the word. It is easy to see that the action C)k preserves the holomorphic 

functions. 
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Definition 2.1. The group ge&;2k IS the Abelian group whose elements are the holo- 

morphic functions 79 : TG x $+ + @ that satisfy the following conditions: 

(l,Pk((; ;)&I) d=fl, “((z &I) ~~o(2)xG; 

(2) for each (.qr, ~2) E TG the functions 

79(h,g2),-) : 6, + C, and ~‘(h,a),~) = ~pk79((gl,g2kl/t) 

have power series expansions at icx, of the form 

~Y((a,Yz),~) = c Glq”Y ti’((g,,g2),2) = c bdp”‘, 

n>K il>K 

where K E Z, q = exp{2rtir}, and a,,,b, E Z [i, l/IG/,exp{2rri/Ig1g21}] ; 

(3) Let C,,(G) be the centralizer of gr in G, and let $= exp{2rri/lC,,(G)I}. If n 

and IC,, (C)I are coprime, and cr,, is the ring automorphism of Z[ l/ICI, $1 defined by 

a,($) = rc/“, then 

an(am(gi,g2)) = a,(gt,g”,), 4Mgr,gz)) = Mgi,8);). 

The group structure in k?“e,* is induced by the sum of functions. 

(2.5) 

Remark 2.2. The second condition in the definition of J?‘l<2k is, from the point of 

view of modular forms, the strongest possible integrality condition [ 18, p. 80, (Ka-12)]. 

Remark 2.3. The action of (Z/lC,,(G)lZ)* on the group C,,(G) appears in repre- 

sentation theory [ 161. The action of a,, on the coefficients a,, is associated to the 

usual Galois action of the group (Z/lC,, (C)I)* on modular forms of higher level 

[22, Ch. 6, Section 31. 

The third condition in Definition 2.1 implies that for all the elements g1 E G the 

functions an(gi, -) and b,(gl, -) belong to the ring R(C,,(G)) E Q, where R(C,,(G)) 

denotes the ring of complex characters of the group C,,(G); see [16, Proposition 1.51. 

Using the second and third conditions, and the usual scalar product of class functions 

on G [29, part 1, Section 2.31, we can see that a,(gi, -) and b,(gl, -) are indeed 

elements of R(C,,(G))[l/IGI]. 

Remark 2.4. If t9 E gt/F2k and d’ E &t/G2k’, then @r9’ E ~Y~~~2(k+i”. Hence, the direct 

sum g//i = BkEL gR’G2k has a natural structure of a graded ring. 

2.2. The Green functor structure of &!I!~ 

Let 9 be the category of finite G-sets. If S is an object of 9, then it has a decom- 

position 

S = G/H, u G/H2 u . u G/H,, 

into a disjoint union of orbits of GJHi. We define a graded ring g//: by the equality 

M; = RT;, @ . @ fR& 
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where the ring structure is induced by coordinate-wise multiplication. Let H and K be 

two subgroups of G. If H c K and r9 E &!/i, then we define restzr9E 

R/i as the restriction of r9 to the subset TH x 6, of TK x 6,. If H is a subgroup 

of G, then we shall write IH for the kernel of rest:. 

Let LEG, and let c,:H+gHg -’ = “H be the map defined by conjugation by 9. 

Then cy induces a map F, : TH x lo+ --f TeH x b,. We define cg : && + &tt$ by 

19 + S&,. Finally, if H c K, we define ind: : 8/t: + &ttE by the following formula: 

where (gl,g2) E TK and (K/ff)[gl,g21 = {gH E K/H I g;gH cgff, i = 1,2}. 
The morphisms rest: and indg admit canonical extensions to homomorphisms of 

groups rest;, : 8itL$ t &f/k and indi’ : &f$ +&t&f for any pair of finite G-sets S 

and S’ such that S’ c S. An analogous statement is true for the morphisms c;. One can 

see that this family of morphisms induce a structure of a Green functor on S --) R/i 

[12, Section 31; see for example [33, p. 2751 for a definition of Green ftmctors. A 

structure of Green functor is typical of the coefficient rings of multiplicative equivariant 

cohomology theories. 

Among the Green functors there exists a universal object called the Burnside ring. 

The Bumside ring .4(H) of a finite group H is the Grothendieck ring of the monoid X 

of finite H-sets, where the addition is induced by the disjoint union of H-sets, and the 

product is induced by the product of H-sets. That the Bumside ring functor is universal 

among the Green functors means that given any Green functor G, in particular R/z, 

there exists a natural transformation of functors A(-) --) G [33, Proposition 8.121. Let 

us recall that, as a consequence of [32, Proposition 1.2.31, the unit 1 of A(G)@Z[l/~GJ] 

can be written as an orthogonal sum of idempotents eH, one for each conjugacy class 

of subgroups of G; therefore there exists a decomposition 

A(G) @ Z[l/lGIl = @cd(G) @ W/lGll. 

This decomposition induces a similar decomposition in any Green hmctor. 

Lemma 2.5 (Devoto [12,Lemma 3.101). Let en E A(G) be an idempotent corre- 

sponding to the conjugacy class of a subgroup H c G. Then enBd(z = 0 unless 

H = (g~,gz) jar some pair of commuting elements (g,,gz) E TG. 

Remark 2.6. The formula for the product [G/H]ti, ti E 8[/: can be easily derived 

from [32, Proposition 6.2.31. Lemma 2.5 follows from this formula and the explicit 

description of the idempotents eH given in [3,36]. 

Corollary 2.7. Let .FG he the category lvhose objects are the subgroups of G of the 

form (gl,gz), cohere (g,, 92) is an element of TG, and whose morphisms are generated 

by the inclusions of groups and the conjugation by elements of G. Then 
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( 1) The jhmily qf restrictions 8& --j c%L$,,~,~) induce un isomorphism 

(2) The jbmily of’ induction morphisms induce an epimorphism 

(2.6) 

(3) Jf’ C( TG) is II set of’ representatives qf conjuguy clus.srs in .YG, then 

(4’//; - @ {B;/k;}‘y (2.8) 
HEC‘(7‘G) 

uhrrr W(H) is the Weyl group oJ’ H. 

Remark 2.8. Formula (2.6) follows directly from Lemma 2.5 and the theory of Green 

functors. This formula implies, by [32, Theorem 6.3.31, formula (2.7). Finally, the last 

formula follows from our Lemma 2.5; using the exact sequence 6.1.4, Proposition 6.1.6 

and the formula 6.1.8 of [32]. See [32, Corollary 7.7.101 for a similar formula for the 

representation ring. 

Remark 2.9. In formula (2.8) one should take in principle the localization of M/, at 

a certain subset S(H) determined by H. This is not necessary since we proved in [ 121 

that the elements of S(H) are units of g/t:. 

Remark 2.10. Let us remark that we can obtain the W(H)-invariant elements of A//E 

using the projector P = (lIIN(H)I) CcIENcHj ~5, where N(H) is the normalizer of H 

in G. 

2.3. The 

In this 

Problem 

Problem 

section we shall consider two problems. 

1. We want to find generators of &!z considered as an algebra over 6(/*. 

2. We want to show that the functor M + M c&6(/* (4’(/;;. from the category 

of graded modules over e/c* to the category of graded modules over 8//F;. is exact. 

In order to solve both problems it suffices, by Corollary 2.7 and Remark 2. IO, to 

consider the case G = ($1, h) with gh = hg; hence in this section we shall always assume 

that G has this form. 

As G is Abelian, then TG = G x G and C,(G) = G, Vg E G. Let i be the homomor- 

phism of groups from (Z/iGiZ)* to GL(2,Z/IGIZ) defined by i(n) = (;I y). Using this 

homomorphism we see that the actions of (Z/I G]Z)* and 5X(2, Z) on TG are induced 
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by the action cr of GL(2,L/IGIZ) on TG given by 

(2.9) 

We shall fix a representative [gl,g2] in each orbit (gi,g2) of c and write r([yi,g2]) 

for the isotropy group of [gi,g2] in TO(~). We shall denote the set of representatives 

h>el by S. 

Definition 2.11. The group 8~~-2k(r([gt,g2])) is the group of holomorphic functions 

6 : b+ + Cc such that the following conditions hold: 

(1) 19(r) = (er + d)-ktY((ar + b)/(er + d)), for all (,” f;) E Ngt,g21); 

(2) If ra is any cusp of r([gl,g2]), and (z :) E SL(2,Z) is a matrix that trans- 

form the cusp ice into the cusp ZO, then the function 79’(t) = (ez+d)kt9(az + b)/ 

(et + d) has a power series expansion at ioc of the form 79(r) = C,>,,, a,,q2”llq11, 

with a, E Z [i, h,exp2ai/iGI] 

We define ~tf*(Ngl,.yd)) = CJ& ~~~-2k(Ng~,g21)). 

Let 

be the ring homomorphism defined by 

Remark 2.12. Using the transformation law of Definition 2. I (1) we see that we can 

obtain the power series expansions of a function A(8) at any cusp of r([gl,g2]) by 

considering the expansions at ioc of the functions rY((gi, 92), z) or tY’((gi, gz), T), where 

(gt,g2) are suitable elements of the orbit (gi,gl). From Definition 2.1 (2) it follows 

therefore that the function A(r9) belongs effectively to &!*(r([gl,gJ). 

Remark 2.13. The Galois action of (Z//G/Z)* on the rings &f*(T([gl,g2])) 

[22, Ch. 6, Section 31 induce an action Olga of (Z/lGlZ)* on $,8,.g2, &e/* (r([gl,g2])). 

Proposition 2.14. The morphism A is an isomorphism. 

Proof. We shall define an inverse Cp of A. Let 0 = @ OIg,,yzl be an element of 

@ ,g,,Q2,ES &/*(r([gt,g2])). If (hl,h2) is an element of TG, then there exists [gi,g2] 

ES and a matrix (y J) in GL(2,Z/lGjZ) such that (T I) x [gi,g2] =(h,,hZ). Let IZ be 

the determinant of (T J). Then we can write 
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where (z f;) E TO(~) and p: To(Z) +GL(2,Z/]G]Z) is the projection. We define 

. 

It is not difficult to check that @ is well defined and that it is an inverse of A. From 

the integrality condition (2) in Definition 2.11 it follows that Q(O) satisfies condition 

(2) in Definition 2.1. 

The rings &Y(T([gi,gJ)), as the rings of classical modular forms of higher level, 

have a modular interpretation related to elliptic curves; see, for example, [22] for the 

classical case. The main difference is that, due to the integrality condition (condi- 

tion (2) in Definition 2.11) in the coefficients of the expansions of the elements of 

&[*(r([gi, gz])), one has to work with elliptic curves defined over yenerul schemes 

and with the arithmetic moduli of elliptic curves; see [ 11, Introduction]. We shall recall 

briefly some relevant definitions and results from [ 1 I, 191. 

Definition 2.15. Let S be a scheme. Then an elliptic curve E: E P’S over S is 

a proper and flat morphism of relative dimension at most one and constant Euler- 

Poincare characteristic 0, together with a section s : S + E. We shall also write EIS for 

an elliptic curve E 5 S. 

We shall write QEls A E for the invertible sheaf of relative differentials, and define 

WEIS = P*(!+s). 
An elliptic curve admits a unique structure of group scheme such that the section s 

is the identity element. Let [n] : E + E, for n E N, be the map induced by multiplication 

by n in the group scheme structure on the elliptic curve. Then, if n is invertible in S, 

the map [n] is Ctale. We shall denote the kernel ker [n] by E[n]. 

Definition 2.16. Let A be an Abelian group. An A-structure on an elliptic curve E + S 

is a morphism of abstract groups 4 :A + E such that the effective Cattier divisor D,4 

of degree #A defined by 

44 = c [4(a)] 
at,4 

is a subgroup of EIS. 

Let El1 be the category whose objects are the elliptic curves E L S and whose 

morphisms are the commutative squares 
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such that E =S xsl E’. A mod& problem .ZZ is a contravariant functor I K from 

El1 to the category Sets of sets. A moduli problem .&’ is called representohle if 

and only if there exists an elliptic curve Et/ + $I’, and a natural isomorphism of 

functors @: .N+ [-,&, +Sl,]~tt. If ..# and ./t are two moduli problems, then the 

simultaneous mod& problem K x . 1 . is the functor defined by f?’ x ._1 ‘(EIS) = 

./&‘(EIS) x .4’.(EIS). 

Example 2.17 (A-structures). Let A be an Abelian group. Then the moduli problem 

of A-structures ~,@A is the functor 

E 4 {@ : A ---f El@ is an A-structure}. 

Example 2.18 (To(n)-structures). The moduli problem of &(n)-structures is the set 

of isogenies z : E + E’ of degree YI such that locally f.p.p.f. (faithfully flat of finite 

presentation) ker M admits a generator. 

Example 2.19 (Jacobi structures). The moduli problem of Jucobi structures is the 

functor :4$ that assigns to each elliptic curve E + S the set of pairs (x, CO), with 8x 

a TO(~) structure on EIS, and (r) an (0”~ basis of (UNIX. 

Definition 2.20. A rnoduluv fiwm ,f of level A and ,reight k is a rule that assigns to 

each triple (EJspec(R), 4,~) formed by an elliptic curve Elspec(R) over the spectrum 

of a ring R together with an A-structure & on E and a basis m of (tiEispec (R, an element 

of R in such a way that the following conditions are satisfied: 

(1) The element f(Ejspec(R), $,(o) depends only on the R-isomorphism class of 

the triple (Elspec (R), 4, to). 

(2) If i is a unit of R, then j’(EIspec (R), #,E,o) = iLpkf‘(Elspec (R), c$, LO). 

(3) The formation of ,f commutes with arbitrary extensions of scalars. 

We shall restrict our attention to elliptic curves E + S defined over schemes where 

2 is invertible. Since elliptic cohomology is defined over Z[$] we do not lose any 

generality. 

Proposition 2.21. The pair ,f&med by the universul Jucobi quurtic E.1 of’ equation 

dejined over Z[ I/2,6, E, A-’ ] and CO = dX/Y represents the moduli problem qf’ Jacobi 

structures. We shall write 5’~ jbr the spectrum qf’Z[i, 6, C, AK’]. 

Remark 2.22. The proof of this proposition is similar to the proof of [13, Proposi- 

tion 21; this proof deals with the case S = spec k, where k is a field of characteristic 

different from 2 but it can be easily modified, using the techniques of [ 19, Ch. 21, to 

cover the general case. 

We shall be interested in the simultaneous moduli problems &J = . HA x L?‘J, where 

A = (yl, 92) for some pair (~1, yz) E TG. For simplicity we shall restrict the discussion 

to the case A = Z/nZ x ZJnZ. The general case can be obtained using the results of 
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[19, Ch. 71. Let Ma be the affine subscheme of &[n] xx, E_,[n] consisting of pairs 

of points (P,Q) that form a basis of EJ[~]. Let 

be the elliptic curve obtained from EJ by change of basis; note that llj(n) has a natural 

structure of scheme over .S,. The curve E,,+I.d&(n) has a canonical Jacobi structure 

(X,(U) induced by the Jacobi structure of EJ and the canonical Z/nZ x Z/nZ-structure 

p induced from .&V”(n). From Lemma 3.6, the result 4.2, and Theorem 5.1 .I of [19] it 

follows that (E,.J I&J(~), r, /3, co) represents .ME~~z~z!~L,J. 

If ,f is a modular form of level (Z/n?? x Z/d, J), then f is completely characterized 

by its value ~(E,,J 1. &n,(n), x,~,o) E Cc(&(n)); therefore we have an inclusion 

M*(r(n)) c (‘(,HJ(?z)). (2.10) 

Let us describe the scheme Zf~(n) explicitly. The multiplication by n in EJ is 

described, see [ 171, by 

[n]X=Xn2F;,(X-‘)F;,-‘(X), (2.1 1 ) 

[n] Y = YG,(X)F,-‘(X), (2.12) 

for certain polynomials F,, G, E &YP*[X]; we shall write T,(X) =X”‘F,(X-’ ). There- 

fore 

I’(EJ[n])= W*[X, Y]/(Y’ - 1 +28X2 - cX4, T,(X),G,(X)Y =F;,(X)‘). 

We shall write C(EJ[~]) = cV/*[x,y] and Cl(E~[nl XS, EJ[~]) = 8//*[~1,y1,~2,y2]. For 

each pair (a, h) E Z/nZ x Z/nZ such that (a,b)#O we have an element Scn,hj E C’(. I”(n)) 

defined by 

&,/J,(P, Q> =x(aP + bQ)> (2.13) 

where aP + hQ E EJ[~] is obtained using the group structure of EJ[~] and x is the 

restriction of the X-coordinate of the universal Jacobi quartic. A pair (P, Q) is in 

.,4’(n) if and only if ,Sc,b)(P, Q) # 0 for all the pairs (a, h); hence 

ft.&(n))= C(EI[~I XS, E.,[nl>&$,,l. 

It is easy to see that XI =Scl,s, and x2 = Sto,l,. Using the addition law for the Jacobi 

quartic [ 17,231 one can easily see that 

1 (1 - (:2q,,&%2,0) 
“VI = - 

1 (1 -a2$&%X 

2 
[ S,l,O, 1 and y2 = - 

2 
[ S,O,l, 1; 

hence C(k’J(n)) = cR~*[S~~,~),S&\)]. We shall see that the elements Scu,bI and their 

inverses are modular forms of level TO(~) and weight 2. Therefore the inclusion (2.10) 

is really an equality. 
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Remark 2.23. If E is any Jacobi quartic over any ring R 

we can always define “functions” S$, as in (2.12). 

Remark 2.24. If E is defined over a field k, then k(SCa,h)) 

sion k(x) obtained by adjoining the points of order n of E 

(1998) 237-264 

where n is invertible, then 

is isomorphic to the exten- 

We can now discuss an analytical interpretation of the elements Scu,b). Let S(U, T) be 

the function defined by 

(1 +)2 -‘” 
(S(% r)) = 

(1 - q”eU)( 1 - qne-u) 1 (2.14) 

Then the functions s(u,r) and s’(u,r) (i3/&)(s(u,~)) parametrize the Jacobi quartic 

y2 = 1 - 26x2 + &X4. 

where 6(z), E(Z) are modular forms for the group TO(~). Let c be a natural number 

bigger than 2. Then we shall call 

(2.15) 

The functions ~t~,b)(t) are the analytical version of the algebraically defined Sca,b); see 

the last pages of [14] where one can also see the modular properties of these functions. 

Proposition 2.25. The ring && is a flat &/*-module. 

Proof. The moduli problems P(gi, g2),J are flat (this is due to the fact that the problem 

T(n), n >3 is flat [19]). Therefore &‘/*(P(gi,g2)) is flat over &/*. The proposition 

follows from Corollary 2.7 and the existence of the morphism A. We refer to [7] for 

another proof of the fact that rings of modular forms of higher level are flat. 0 

2.4. The ideals of 8/k: 

The groups HcG generated by a pair of elements g, h such that gh = hg play a role 

in equivariant elliptic cohomology similar to the role played by the cyclic groups in 

equivariant K-theory. 

Definition 2.26. We shall write FG for the family of subgroups of H of G such that 

there exists an epimorphism Z x Z + H. 

Let P be an homogeneous prime ideal of 8;*. Then we shall say that a subgroup 

H of G is the support of P if the following conditions are satisfied. 

(1) There exist an homogeneous prime idea1 P’ of &!t$ such that 

P = (rest$)-‘(P’). 
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In this case we shall say that P comes from H. 

(2) If H’ E H is any subgroup, then P # (rest;, )-’ (P”) for any homogeneous prime 

ideal P” of &Y&,. 

The support of an homogeneous prime ideal is defined up to conjugation. 

Proposition 2.27. The support of any homogeneous prime ideul P E Jt/G is the c’on- 

,jucqacy class of’ a subgroup HE .FG. 

This result follows from (2.8). The following corollary is a general fact. The proof 

is basically the same as the proof of [27, Proposition 3.71. 

Corollary 2.28. Let P be an homogeneous prime ideul CI~ 8/r: and let H be a suh- 

.~lroup qf G. Then the ,followinq statements we equivalent: 

(1) P comes ,fvom &Y$ viu the restriction &t!: + e/F;. 

(2) The kernel ker (&Fz 4 &Y/i) is contained in P. 

(3 ) The localized module {E/E;}), # 0. 

Corollary 2.29. Let H be u subgroup of G. [f K is in the .support CI~’ un ideul P of’ 

E/t:, then K is in the support of(r$)-‘(P). 

3. Equivariant elliptic cohomology 

3.1. The geometric tliisted elliptic genus 

Recall that the universal elliptic genus @: MSO* ---) Z[i][6, E] can be defined using 

a K-theoretical characteristic class, called Witten’s characteristic class, 

0 : KO* + K*[[q]]. (3.1) 

The notation in (3.1) is the following : we write KO* for real K-theory and K* for 

complex K-theory, q is a formal variable, and K*[[q]] is the functor that assigns 

to each space X homotopy equivalent to a finite CW-complex X the ring of formal 

power series in q with coefficients in K*(X); see [ 12,24,26] for a precise definition of 

Witten’s characteristic class, and [21,28] for references about the elliptic genus. When 

X is a spin manifold, the elliptic genus evaluated in the bordism class defined by X 

has a geometric interpretation in terms of S’-equivariant operators on the space of free 

loops on X [28,35]. This interpretation is related to the theory of non-linear sigma 

models [34]. 

We will define our equivariant version of the elliptic genus using a twisted general- 

ization of Witten’s characteristic class. The definition of this class is motivated by the 

theory of orbifold sigma models. Our “twisted” version of the functor K*[[q]] is the 

functor $6 : G-spaces + Rings given by 

-3;(X)= @ {K*(X”‘.“‘)C9zR((gz))}[[q”‘““]], (3.2) 
(II.YI)ET~ 



248 J.A. Devotol Journal oj’ Pure and Applied Algebra 130 (1998) 237-264 

where X is a compact G-space, X91-82 = {~~X/gin=g2x=~}, and R((y;?)) is the ring 

of complex characters of the group generated by 92. It is not difficult to show that & 

is, in the sense of [32, Definition 6.71, a G-equivariant cohomology theory. 

Let X be a compact G-space, and let E +X be a G-equivariant complex vector 

bundle. Then, for each pair (gi, 92) E TG, the restriction Elxq,.az +Xg1%Y2 admits a de- 

composition 

(3.3) 

where the (gi,g2)-equivariant complex vector bundles Fjk are characterized by the fact 

that gi acts fiberwise as exp{27cij/lgil} and g2 as exp{2rcik/]g21}. We define 

(3.4) 

In (3.4) we are taking c= 1gr 1, c’= 1g2/, s = (nc +j)/c with II E Z, and R((g2)) = Z[w]. 

If E is a real G-equivariant vector bundle, then we define 

The conventions used in the decomposition of (E @ @)Ix~I.~2 are the usual ones in 

index theory; see [6]. In [ 121 we showed that 0~ has an extension to a G-equivariant 

stable exponential class, which we called Witten’s twisted cluss, 

Let X be a closed, oriented, compact, Riemannian manifold of dimension 2k where 

G acts by orientation-preserving isometries. We shall assume, just to simplify the for- 

mulae, that each X9’*@ is connected. This is a minor assumption that can easily be 

removed. As the order ]G] of G is odd, the orientation on X induces an orientation on 

each one of the submanifolds Xg1,g2 [6, p. 5841. Recall that, since BSpin and BSO are 

homotopically equivalent at odd primes [3 1, p. 3361, orientable manifolds are orientable 

for K* @ Z[i]-theory. Therefore, for each pair (gi,gz) E TG, there exists a Gysin map 

induced by the projection 71 : JP-@ + pt. The family of maps ~8”‘~ induces a Gysin 

map rc! : X:(X) 4 A$_ 
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Definition 3.1. The geometric twisted elliptic genus @G is defined by the equality 

@G(X) = 711 
hA[TW) 

eG([dim(TX)I) > 
= c @(PJZ) E XG( pt), 

(YlrQZ) E 7-G 

where [dim(TX)] is the element of K&Y) that we obtain if we replace all the bundles 

F$ in formula (3.3) by topologically trivial bundles Tin_, where dim@ qk = dime $k and 

where gt and g2 act in the same way as in Fik. 

Remark 3.2. Besides the class 0, Witten considers in [35] two characteristic classes 

related to 0 by elements of SL(2,Z) not in TO(~). We shall be interested in one of 

these classes, which we shall denote by 8’, that is related to the element 
( > 

_y A We 

shall write @’ for the genus associated to it. This genus has, as the elliptic genus, a 

natural geometric interpretation as the S’-equivariant index of some operator of Dirac 

type on loop spaces. The study of the equivariant index of this operator on twisted 

loop space leads us to two objects: an equivariant generalization & of 0’ and a “new” 

twisted version @L of the elliptic genus. For simplicity we shall only give here the 

contribution of the bundles & to @L(X). Using the splitting principle it suffices to 

consider the case dim& = 1, in this case the contribution of &. to @b(X) is 

CkENq 
I/2(m+li2-k~c')2~(m+I:?k/c')F~~~'~+C'~2-2k) 

I 

(-I)' 
(3.6) 

CkEN q1i2(m+1/2-klc’)2~(m+li2-k/c’)er(I(m+1/2~)F(2~’~~~~‘/2~2k) 
/k 1 

where p = exp2nij/c. The series involved in (3.6) are related to the power series 

expansions of theta functions with characteristics. 

It is easy to show that @o induces a ring homomorphism 52: + &(pt), where sZ$ is 

the geometric oriented equivariant bordism of [8]. As we are interested in cohomology 

we shall suppose that @o it is defined on Szz = Q’;,. 

Pick T E h, and let q = exp(2rrir). We define @&C)((gI,g2), r) as the evaluation 

of @o(,X?,@) at g2 and r. The evaluation at g2 is done via the identification between 

representations and characters. 

Proposition 3.3. The Jkzction ((g 1, g2 ), z) 4 @&Y)((gI, g2), 5) belongs to the ring 
M;. 

Proposition 3.4. The twisted elliptic genus defines a graded ring homomorphism @G : 

SLT, * &. 

Remark 3.5. The proof of both propositions can be done using a cohomological for- 

mula, obtained using the Pontrjagin character, for the twisted elliptic genus; see [12, 

Section 21 for the details. We still have to check that if X E a;;, then the function 
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@o(X) satisfy all the conditions of Definition (2.1). This follows from the cohomolog- 

ical formula for the twisted elliptic genus, the transformation laws for theta functions 

with characteristics which can be found in [ 12, Section 21 or [ 171, and the fact that 

the expansion of the functions @&Y)‘(Y~,.Y~z) correspond to the series Q&Y), where 

@‘. is the genus of Remark 3.2. 

3.2. Homotopy-theoretic equivariant oriented hordism 

Let (X,A) be a pair of G-spaces. Using cellular approximation we can suppose that X 

is a G-CW complex and that A is a G-CW sub-complex. Then, for each real orthogonal 

representation V of G of dimension IV/, there exists a suspension homomorphism 

0(V) : O,“(X,A) --7‘ QG n+lC’I (D(V) x X(WV x A) u (S(V) x X)), (3.7) 

where D(V) (respectively S( I’)) is the unit disk (respectively the unit sphere) in V. If 

(M, 8M) + (X,A) is a representative of a bordism class [X] E @(X,A), then a( V)([X]) 

is the bordism class of 

Remark 3.6. If V and W are two finite-dimensional 

of G, and Vn W=O, then CJ(VCE W)=g(V)o(W). 

Remark 3.7. If V is a non-trivial representation, then 

general, an isomorphism. 

real orthogonal representations 

the suspension a(V), is not, in 

Let % be an orthogonal representation of G that contains an infinite number of times 

each finite dimensional representation of G. We shall write F%c for the set of finite 

dimensional G sub-spaces of %!. We define an order < on F% by: V < W if V is 

isomorphic to some G-submodule of W. Using this order, and Remark 3.6, we see 

that {0$(X x D(V), (D( V) x A) U (S(V) x X))} 1s a direct system of graded groups 

indexed by the ordered set F%. 

Definition 3.8. Let (X,A) be a pair of G-CW complexes, A cX. The homotopy theo- 

retic equivariant oriented bordism group MSO$(X, A) [ 10, p. 721 of the pair (X, A) is 

the graded group defined by the equality 

MSO,G(XJ)= ~.L’f+,,,(D(V) xX,(D(V) x A)u(S(V) xX)). (3.8) 
I ET”+ 

Remark 3.9. The way in which the theory MSO$(X,A) has been defined corresponds 

to the definition of [lo] only when the order of the group is odd. The reason is that, 

for IG( odd, the universal equivariant orientation in the sense of [lo] is completely 

determined by an orientation preserving action of G [9, Section 61. 



3.3. The homotopy theoretic twisted elliptic genus 

Using the explicit description of MSOZ given by (3.8) we see that in order to 

extend the domain of definition of @G to MS02 = MSO!x it suffices to define, for 

each V E F#, a morphism 

where C(V) = D( V)/S( V), in a way compatible with the suspension maps (3.7). 

Let us suppose that G = ($1, h) with gh = hy. Let (M, c?M) + (D( V).S( V)) be a rep- 

resentative of a bordism class [X] in ft$!(D( V),S( V)). In the definition of $(M,c?M ) 

(q~,y~,z), where (MI, ~2) is an element of TG, we have to consider two cases. 

Cuse I: Suppose that G = (yt, ~2). Then V admits a decomposition 

where VO = (1’ E 111 UL’ = r, V~.I/ E G}, I$/; are the non-trivial irreducible representations 

of G and n,~ is the multiplicity with which the representation Q, appears in V. We 

shall write VI = ejn n,~ l$. 

The suspension a( V(I) : Q”(D( VI ),S( VI )) + Q”(D( V),S( V)) is an isomorphism. 

Suppose that (N, ?N) 5 (D( VI ),S( VI)) represents the class a-‘( C;,)([X]). By hypoth- 

esis D( VI )r’i%Yr = 0 SO N”‘*Y2 C ~~‘(0). Let TN,,w.+ be the restriction of the tangent 

bundle of N to N(‘l-mJ. Then we have a decomposition TNtJ., ,,? = TF <@ NF of TN,\Js,,.,,I 

into the part TF tangent to the fiber of p : N + D( V) and the normal part NF. Then 

we define 

(3.9) 

The conventions in (3.9) are the same that we used in Definition 3.1. The functions 

q(r) are the functions defined in (2.15). 

C’LIS~ 2: Suppose now that H = (q1,~2) # G and let V’ and (M’, ?M’) be the repre- 

sentation V and the manifold Ad with the H action. Then we define 

~:I(M,c!M)((~l,~z,~)=~~~(M’,c?M’)(gl,~z,s), (3.10) 

where the right-hand side is defined as in case 1. 

It is not difficult to see that the family of morphisms @:j induces an extension cP(; 

of the geometric twisted elliptic genus. If G is now any finite group of odd order, then 

we define @G : h-ISO$ -i Et/$ as the composition 

MSO$ -11, 
rest - ’ 

lim MSO$* 5 lim &kz w n/J$!, (3.11) 
- c- 
,,E ic, /Iem rc, 

where Y is induced by the restriction morphisms I$ : MSO$ 1 MSOF, @ is induced by 

the family of morphisms @H, and rest-’ is the inverse of the homomorphism defined 

in (2.6). 
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Let AMSO = [WP2]([CP2]2 - [WP2])2 EMSO* cMS0~. Then @~(d~so)= A E &f&f. 

As A is invertible in &t$ the twisted elliptic genus admits a factorization 

MSO,G - 

We define mso~(X,A)=MSO~[l/IGI, l/d~so](X,A). It is easy to see that msog is a 

G-equivariant stable multiplicative cohomology theory. 

Proposition 3.10. The homotopy theoretic twisted elliptic genus @G : msoz + c%$ is 

a transformation of Green functors. 

Proposition 3.11. The homotopy theoretic twisted elliptic genus @G : mso: + R&g is 

an epimorphism. 

Proof. Using Proposition 3.10 and Corollary 2.7 we see that it suffices to consider the 

case G = (g,, ~2). In this case it suffices to prove, using the isomorphism A, that if 

(g,, g2) = G, then k’6J E &t*(T(gi, g2)) there exists [M] E msoz such that @o([M]) = 0. 

By the structure theorem for Abelian groups we can suppose that G = ZJc.Z x Z/c’Z 

where c//c. We shall discuss the case c’ = c and refer the reader to [ 121 for the general 

case. In this case 

where s(,,b)(z) are the functions defined in (2.15). The functions s(,,b)(r) can be ob- 

tained applying the homotopy twisted elliptic genus to the Euler class of the irreducible 

representation v(a,b) of weight (a, b) of Z,. x &. Applying formula 

elements of MSOE we can see that the elements s~;,‘~)(T) are also in 

twisted genus. 0 

(3.9) to suitable 

the image of the 

3.4. Equivariant elliptic cohomology 

We shall describe now the results of Section 5 of [ 121. 

Definition 3.12. Let (X,A), A CX be a pair of G-spaces formed by a finite G-CW 

complex X and a sub-complex A. Then the equivariant elliptic cohomology 8t&X,A) 

of the pair (X,A) is the graded tensor product 

(3.13) 

where &t$ is considered as a graded algebra over msoz via the twisted elliptic genus. 
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Remark 3.13. It is easy to show, by a simple argument of change of rings, that 

&&Y,A) N MSOT;(X,A) RMso,: &8& 

In [ 12, Section 51 we showed that the functor (X,A) + B//:(X, A) defines a 

G-equivariant cohomology theory. The main point in the proof was to show that the 

Green functor structures of H + msog(X, A) and H + &Y~z$ induces a Green functor 

structure on H + @i$(X, A). Let us quote the relevant results. 

Proposition 3.14. Let H be u subgroup of G and let In he the kernel of the homotopy 

theoretic t,<isted elliptic genus 

Then In = restr$(Io)msoG. 

Proposition 3.15. Let X he u jinite G-CW complex. Then the junctor H + &‘/E(X) 

has u nuturul structure of Green functor. 

It is straightforward to check that the restriction and conjugation morphisms of the 

cobordism functor pass to equivariant elliptic cohomology. Proposition 3.14 implies 

that also the induction functors pass to elliptic cohomology. 

Since H --f &LFz(X, A) is a Green functor defined over Z[ l//Cl] we can decompose 

it using the idempotents cH of the Burnside ring A(G). As the Green structure of 

&//;“_,(X,A) is obtained from the Green functor structure of cobordism by passing to 

the quotient, then ~H(u@I~) =e~(a)@e~(b), for any pair a E msog(X,A), and h E 8Ftz. 

The products eH&fg are described in Lemma 2.5 and Corollary 2.7. A description 

of the products enmsoz(X,A) can be obtained using [15, Lemma 2.2; 20, Lemma 4.71. 

Combining both descriptions we obtain the following theorem. 

Theorem 3.16. There exists u natural equivulence of junctors 

(3.14) 

The sum in (3.14) is being taken over u complete set of representutives oj’ conjugac:,, 

classes of subgroups of the form (gl,gI) and we localize with respect to the set 

S((gl,gz)) which is the imuge oj’ the ideal q((g1, g2), 0) = ker eH under the natural 

homomorphism A(G) + &Y~. 

Theorem 3.17. The functor X + &1ez(X) ,from finite G-CW complexes to grctded 

rings is a stub/e G-equivaricmt cohomology theory. 

It is easy to show that the right-hand side of (3.14) is a stable G-equivariant coho- 

mology theory. Theorem 3.17 follows immediately. 



i-et G he a finite group, and let ;F be a family of subgroups which means that it is 

closed under passing to s’ubgroups and conjugate subgroups. IfX ani-l Y are two G-CW 

complexes, then we shall say that a G-equivariant map f :X + I is a F-equiticrlenr~r 

if the induced map of iixed pornt sets 

f” ; p --) yf’ 

is an ordinaly homotopy equivalence for each subgroup H f .F [2, p. 71. 

Example 4.1. Recall that a G-space E.F is called 21 ~nit><rLT~~l space Tar the family P 

if l!‘FN is contractible for H E 9 and empty for H $3; the construction of E.F can 

be found in [33, Ch. 1, Section h]. l+‘or any G-CW complex X the projection 

is an ,P-equivalence [2, p. 71. 

Definition 4.2. Let .I be an Abelian calcgory. We shall sny that a functor It Frum 

the category of G-CW complexes ID &’ is .B-incurim if h(j) is an isomorphlsm for 

evrry F-equivalence ,f :X + Y. 

We shall describe briefly what we need about pro-groups; more details can be found 

in [Z, Section 2; 5, Section 21. Let &’ be a filtered category; for example an ordered 

set. Then an Abehan ~~O-~YOUJT .iM in&cd b,~ .rri’ is a owtraavariant fbnctor from ,ny’ to 

the category of Abelian groups. We shaL1 write usually M = (M,), where the indices 

x are the objects of d and -44, = M(r). Let {Mx} and {Nb} be two pro-groups. We 

define the set ProHom({M,}, {N,j}j of pru-homornorplzrsms ii-om {&TX} to {Np} by 

where both limits are taken in the category of groups. The category Pro& whose 

objects are the pro-groups and whose morphisms arc the pro-homomorphisms between 

pro-groups is an Abelian category [2. Section 21. Une can therefore define in the usual 

way pro-group valued cahomology theories. 

WC can associate to the functor BE’{: a pro-group valued G-cohomology theory 

defined on the category of G-CW complexes. If x’ is a G-CW complex, then 

cl&X)= (C%&&,}, 

t-a;‘, 



J. A. Deooro I Journal oj Pure and Applied Algebra 130 (1998) 237-264 255 

where XX runs over the finite G-sub-complexes of X. The morphisms 

are induced by the inclusions i,lc : X, -X/j. 

Let 9 be a family of subgroups of G. Then we can associate to 9 a second pro- 

group valued functor X+&&&Y)> defined on the category of G-CW complexes. 

This functor is defined by 

where 1,~ rnns over the finite products of the ideals IH, defined in Section 2.2, for H 
an element of 9. 

Remark 4.3. The generalizations of elliptic cohomology that we have defined can be 

also defined for every stable G-equivariant cohomology theory; see [l] for the case of 

equivariant K-theory. 

Theorem 4.4. The jimctor X 4 &/*(X):F is 8-inaurimt. 

Proof. Let us denote the reduced equivariant elliptic cohomology of a space X by 

z:(X). In order to prove the theorem it suffices, by [2, Lemma 2.21, to show that 

if X is a based G space such that XH is contractible for all H E 9, then 

is pro-zero, which means insomorphic to the zero object in the category ProGr; we 

refer to [2, p. 1 I] for an explicit description of pro-zero objects of ProGr. 

If H is a subgroup of G, then we shall denote its conjugacy class by [HI. Recall 

that, using the A(G)-module structure of &8[:, we have obtained in Section 2.2 a 

decomposition G/l: = @[HI eH&?/g. If K is a subgroup of G then 

rest$(eeH/~) = rest,G(e,)rest$(&&), 

where rest$(eH) E A(K). From the description of the idempotents of the Bumside 

ring of [32, Ch. I] it follows that if H is not conjugate to a subgroup of K, then 

restE(eH) = 0. Therefore 

(4.1) 

where the sum is over a set S of representatives of conjugacy classes of subgroups of 

G with the property that [H] ES if and only if [H] is not conjugate to a subgroup 

of K. 
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Let f be the cardinal of F and let HI ,...,Hf be a list of the subgroups of G 

in 8. We can form the pro-group 

M= @ M[H]= 
[H] c .% 

This system is indexed by the set of finite skeletons of X and, trivially, by the partially 

ordered set {(ni,. . . , nf)lni 2 0). By (4.1) there exists for each (a;ni,...,nf) with 

ni > 0 an epimorphism 

These epimorphisms induce an epimorphism M +&&X), in the category of pro- 

groups. Therefore it suffices to show that the system M is pro-zero. We shall show that 

each one of the systems M[H] is pro-zero. By Theorem 3.16 it suffices to consider 

the case H = (g,,gz) for some pair (gi,gz) E TG. In this case 

Milnor’s exact sequence [25] for the space XY’,Y2 gives us 

O~lim’M[H](c(,n,,...,n,) 
C 

+ limM[H](a,nl,..., nf)-+O. (4.2) 

The first term in (4.2) is the first right derived hmctor of the inverse limit functor. By 

hypothesis Xg1rg2 is contractible and therefore the middle term of the sequence (4.2) is 

zero. This implies that the inverse limit of the system M[H] is zero. Since the algebras 

M[H](a, ni, . . , nr) are finitely generated this implies that M[H] is pro-zero. 0 

Theorem 4.4 is a particular case of a “localization-completion” theorem which we 

shall describe now. If I is an ideal of 8//g and S is a multiplicatively closed subset of 

&f& then we shall associate to the pair (1,s) the family of subgroups 9 defined by 

P= U{SUPP(P)(P~?S=~ and IcP}. (4.3) 

Definition 4.5. If {MT} is a pro-&L{: module and S is a multiplicatively closed subset 

of &se: we define 

s-‘{A&} = {P&}. 

We can now state the localization-completion theorem. 
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Theorem 4.6. The pro-group valued functor X -+ S-‘&/~(X), defined on the cate- 

gory of G-CW complexes is Y-invariant. 

Proof. The proof of this theorem follows closely the proof of [ 1, Theorem 4. I] there- 

fore we shall give only the general argument and provide details in the parts of the 

proof that are specific to elliptic cohomology. We refer the reader to [ 1, p. 51 for the 

rest of the details. 

By general algebraic arguments [2, Lemma 2.31 it suffices to show that if X is a 

based G with the property that XH is contractible for all H E 9, then Sii&$(X)b 

is pro-zero for each prime ideal P c &tg such that P f’s = 0 and P > 1. The notation 

SF’ means “localization at P”. 

Let H E Supp P and let 3 be the family of subgroups of G generated by H. Then 

we can embed X as a sub-complex of a G-CW complex Y which has the property that 

YK =XK for all K which contains a conjugate of H and YK is contractible for any 

other K [I]. By Theorem 4.4 &!‘@Y), is pro-zero. It follows that S;‘&&Y):F and, 

as by Corollary 2.28, P contains Z,, S~‘&~~~(Y), are both pro-zero. The classical 

localization results, see for example [32], imply that S;‘&Pz( Y), + S;‘&‘!,?(X), 

is a pro-isomorphism. This fact can also be proved from Theorem 3.16. Therefore 

SF’ R&X), is pro-zero. 0 

If .F is a family of subgroups of G and EB is the universal F-free-G-space, then 

Theorem 4.6 has the following corollary. 

Corollary 4.7. If X is u jinite G-CW complex, then the projection E.9 x X+X 

induces an ~sornorp~lisrn 

Proof. Let X be a finite G-CW complex. Then, by Theorem 3.2, it induces an iso- 

morphism &‘/*(X), + &‘e*(EB x X),. Using the description of equivariant elliptic 

cohomology given by the right-hand side of (3.14) it is easy to see that if Y is a 

finite G-CW complex such that all the isotropy groups are in 9, then &P:(Y) is 

annihilated by some power of 1,~ and hence &l&Y) is .F-adically complete. As all 

the isotropy groups of the space EF xX are in g, the pro-groups ellz(EF xX) are 

8-adically complete. On the other hand, due to the fact that X is a finite G-CW com- 

plex, the inverse system R&X)> satisfies the Mittag-Leffler condition. This shows 

that the algebraic completion &/z(X), and topological completion &t*(EF x X), 

are isomorphic. 0 

In particular, taking as 9 the family formed by the trivial subgroup {e} of G we 

obtain a generalization of the Atiyah-Segal completion theorem. 
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Corollary 4.8. There exist, for X uny jinite G CW-complex X, an isomorphism 

M;(X); + b&&;(EG x X), (4.5) 

where I = ker{restFel : &t/i + Cth*}. 

If N is a normal subgroup of G and & is the family of subgroups H of G that 

satisfy H f’N = {e), then Ey = E(N, G) [l]. 

Corollary 4.9. Zf X is ajinite G-C W complex where N ucts freely, then the projection 

n : E(N, G) x X +X induces an isomorphism 

&8;(X)> + QL&;(E(N, G) x X). (4.6) 

Combining these corollaries with a standard argument in equivariant topology, that 

implies that for a G space X where the normal subgroup N acts freely &t&X) Y &ttE,N 

(X/N) @ P/IGIl - we obtain a description of the elliptic cohomology of the spaces 

EG XG X (E(N, G) XN X respectively) for any finite G-CW complex (a finite G-CW 

complex with a free N action). 

5. Relation with the work of Hopkins, Kuhn and Ravenel 

5.1. Brief description of the results of Hopkins, Kuhn and Ravenel 

Hopkins, Kuhn and Ravenel defined in [1.5] the notion of generalized characters of 

a finite group G; they used this notion to give, among other things, a description of 

a certain I-adic completion of the elliptic cohomology of the classifying space BG of 

G. We shall show in this section how some of these rings of “generalized characters”, 

namely those that are associated with supersingular curves, are naturally related to our 

coefficient ring g/t:, and how the description of [ 15, Section 81 follows from our 

Corollary 4.9. 

Let p be an odd prime, then we shall denote the p-adic integers by Z,, and we shall 

write aP for the algebraic closure of the p-adic rationals. If G is a finite group, then 

we let Hom(Z”,, G) be the set of group homomorphisms 27; + G. The set Hom(Z”,, G) 

admits an action of G given by 

where g E G, CI E Horn@“,, G), and (ml,. . . ,m,) E i7:. 

Definition 5.1. The ring of generalized characters of level n is the ring 

Cl(Hom(Z”,, G), aP), 

whose elements are the functions f: Hom(Z”p, G)- oe, invariant under the action of 

G. 
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Remark 5.2. One can define refined characters using Galois theory; for the case n = 1 

see Remark 2.3, where we used a description of R(G) @ Q as a ring of Galois equiv- 

ariant class functions 

Cl( G, Q(;))“‘Q”“Q), 

and [ 16, Proposition 1.51; we shall describe here the case n = 2, and refer to [ 161 for 

the general case. 

We shall briefly describe now [ 15, Corollaries 8.4 and 8.51. Let fl be the ring of 

integers in a finite extension 5 of the p-adic numbers Qp with maximal ideal (n) 

and residue field k = C’/(z). The basic data of the Hopkins-Kuhn-Ravenel construction 

is the choice of a ring homomorphism cp: CT/L* + C such that ~(~11) c(n), where ~1 

is the coefficient of xP in the p-series [PIE(X) associated to Euler’s formal group 

law 

E(?r, y) = 
XJl - 26y2 + “,V4 + yJ1 - 26x2 + EX4 

1 - 82x2 v2 

Let E,, be the Jacobi quartic of equation 

,vZ = 1 - 2(/7(6)x2 + &)X4 (5.1) 

defined over lf. The curve E, is naturally associated to the ring homomorphism cp. We 

shall denote the mod(n) reduction of E, by &. The mod p reduction of cp(ut ) can be 

identified with the Hasse invariant of & [15,30]. 

If cp(ul ) = 0 mod p, then the Jacobi quartic E, has supersingular reduction at p. 

This implies that, for all n E N’, E,-, has no non-trivial point of order p”. The statement 

of Corollary 8.4 of [15] is that in this case 

M/*(BG)^ @ U&, z CI(Hom(Z;, G), Gp), (5.2) 
fV/ * 

where for an &V* module A4 the expression MA denotes the adic completion of M 

with respect to the ideal (p, ~1). 

If &ul) # 0, then the Jacobi quartic (5.1) has ordinary reduction. The statement of 

Corollary 8.5 of [15] is that in this case 

&‘t/*(BG)‘@ (I&, rv Cl(Hom(Z,, G), ap). (5.3 1 
CT// * 

This last corollary is really a statement about the theory u;‘&(* [ 151. We shall 

therefore concentrate only in the supersingular case in which the best approximation 

to equivariant elliptic cohomology occurs. 

5.2. The elliptic character ring 

The ring Cl(G, O(5)) G(Q(c)lQ) admits a natural generalization related to elliptic co- 

homology. Let od” be the graded field of fractions of the ring g/F* and let W*(x) be 
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the extension of K* obtained by adjoining all the elements Sea,_,), defined in (2.13) 

for (a, b) E Z/nZ x 77/n& where n = ICI and (a, 6) # (0,O). It is not difficult to see that 

the extension W*(X) is a Galois extension of K* with Galois group GL(2,Z/nZ). The 

group GL(2,Z/nZ) acts on TG as in (2.9). 

Definition 5.3. The elliptic character ring Cl(TG, ~K*(x))~~(~,“!““) is the ring of func- 

tions 

J’: TG+ W*(x) 

that are invariant under simultaneous conjugation and equivariant with respect to the 

actions of GL(2,Z/nZ) on TG and W*(x). 

There exists a natural morphism ev : 62’8~ -+ Cl(TG, K*(x))~~(~,@‘). 

Proposition 5.4. The homomorphism ev induces an isomorphism 

&!; g8,/* K* E Cl( TG, K*(x))~~(~,“‘““). (5.4) 

Proof. As K* is a graded field and ea is a K*-linear monomorphism it suffices to 

check that both sides of (5.4) have the same K* rank. The rank of 

have been computed in [ 121 where we showed that it is equal to 

X8// = h #{(gr,g2>gs)E G X G X G 1 gigj=g,jgr; i,j= 1,2,3}. 

The rank of the right-hand side can be computed as follows. Let 

TG’={(~,,~z)o,...,(g,,~~)n} 

the left-hand side 

(5.5) 

be a complete set of representatives of the orbits of the action of GL(2,Z/nZ)xG on 

TG. We shall write S; c GL(2,ZIn.Z) x G for the isotropy group of (gr,gz)i, & for the 

isotropy subgroup of (gt, g2)i in GL(2,Z/nZ), and r,t = p(S;), where p : GL(2,Z/nZ) x 

G -+ GL(2,Z/nZ) is the projection. 

It is easy to see that 

rankK* Cl( TG, K*(x))~~(~~“~“) = c rankK* W*(x)c’ . 

Using Galois theory we see that rankK* W*(x)c’ = [GL(2,Z/nZ), I;‘]. 

We have an exact sequence 

where C,,(G) is the centralizer of gr and g2 in G. Using this exact sequence 

see that IS,] = Ir! I]C,,(G)], and therefore the cardinal of the orbit of (gt,gz), 

to 

one can 

is equal 
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Then we have 

rankK*C1( TG, K*(,x))~~(~,‘~~‘) = c 
p-w, qml 

I 14’1 

= c IG-W>~I~~)I Ir,‘IlC,,(G>l 

(Y1>92) E i-G IKI lW2~W~)lIGl 

= h c IC,,(G)/ =xE/,. 0 
(C/I,YZ) E TG 

5.3. Elliptic curves over localjields 

Let us recall some of the relevant aspects of the arithmetic of elliptic curves over 

local fields. These results are all well known and can be found, for example, in [30]. 

Let K be a local field that is complete for a discrete valuation v; we shall denote 

the ring of integers of K by A, the maximal ideal by (rc), and the residue field by k. 

Let E be an elliptic curve defined over A that has good reduction E, mod TC; we shall 

write Eo for the group of torsion points of E whose reduction mod p is the identity 

element of E,. If FE is the formal group law associated to the elliptic curve E, then FE 

induces a group structure on n, which we shall denote by nE, and the torsion part of 

this group is canonically isomorphic to the group EO [30]. This result is also valid for 

a Jacobi quartic, provided that p = char k # 2 and that we restrict ourselves to torsion 

points of odd order. 

5.4. { &/~}’ and the generalized characters of Hopkins-Kuhn-Ravenel 

Let TG, = Hom(Z, x Z,, G). Then TGP can be identified with the elements (~1, g2) E 

TG such that the orders of gt and y2 are powers of p. With this identi- 

fication TG, is a GL(2,Z/nZ) x G-invariant subset of TG and therefore the inclusion 

TG, c TG induces an homomorphism 

Cl( TG, K*(x))‘~(~,~/~~) L Cl( TG,, K*(x))~~(~,“/““). (5.6) 

Let W*(X,) be the subfield of W*(x) obtained by adjoining the elements Sca,bI with 

a and h of order a power of p. Then, due to the GL(2,Z/nZ)-equivariance of the 

elements of the elliptic character ring, the map ii admits a factorization 

Cl( TG, K*(x))‘~(~,“‘““) 

& Cl(TG,, ~*(x,))~~(~~“~““) t Cl(TG,, K*(x))~~(~.“‘““). (5.7) 

Let ‘/ : Cl(TG,, K*(x,))~~(~~“‘~‘) --) Cl(TG,, W*(x,)) GL(2.EjPH) be the natural homomor- 

phism and let [MIT be the (p, ut )-adic completion of K*. Then the evaluation 
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homomorphism composed with the homomorphism l;ip and completion induces an 

homomorphism 

The homomorphism 40 has a unique extension to an homomorphism cp : adz + F and 

if ff(n) is the extension of lF that we obtain if we adjoin the elements Sc,b), (a,b) E 

Z/p’Z x Z/p’27 - ((0, 0)} determined by the quartic (5.1) considered as a curve over 

1F, where p’ is the order of a p Sylow subgroup of G, then we have a (non-canonical) 

extension cp : W,*(x) + F(x). Using this extension we obtain from (5.4) an homomor- 

phism 

5.5. Supersingulur reduction 

Let us suppose now that (5.1) has supersingular reduction. In this case there ex- 

ists an isomorphism I between the group of points of order pJ of rts and the group 

of p/-torsion points of E. Then if K-(x’) is the extension of Q, obtained by adjoin- 

ing the points of order p’ of 7c.s 1 induces an isomorphism E(x) rv F(x’). Taking the 

composition of this isomorphism with the inclusion lF(x’) + QD, we obtain an 

homomorphism 

Cl( TG,, [F(x))~~(~,‘!~“) + Cl( TG,, &). 

In this way we obtained an homomorphism 

&& K; + Cl( rc,,,). (5.9) 

The evaluation map ev sends IG into l;, where I is the kernel of ii (see 5.6). Using 

the characteristic function of the set TC, it is not difficult to see that 1: =I,. From this 

it follows that the homomorphism (5.9) induces an homomorphism 

&f*(BG)^@, -Cl(TG,,,). (5.10) 

Then [15, Corollary 8.41 is the statement that this homomorphism is an isomorphism. 
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